Авторы обзора подчеркивают, что основной целью анализа псевдотелепатическихигр является их экспериментальное приложение к изучению нелокальной природы окружающего мира и телепатии как одного из проявлений квантовой нелокальности.
Раздел 1.3 статьиназывается « Какиеубедительные эксперименты могут быть проведены?» Здесь говорится: «Основная мотивация для изучения игр псевдотелепатиизаключается в том, что их физическая реализация обеспечивает наиболее убедительные и свободные от обходов демонстрации того, что физический мир не является локально-реалистическим».
Авторы подробно останавливаются на тех условиях, которые необходимо выполнить (обеспечить), чтобы исключить сомнения в правильности результатов экспериментов по телепатии. Речь идет о том, как убедить «заядлого любителя детерминизма», что классическая физика «is wrong» — ущербна, увечна, что ей нельзя доверять, что она является отклонением от истины, упрощением и искажением нелокальной основы реальности.
Во втором разделе статьи авторы делают обзор наиболее широко известных к настоящему времени псевдотелепатическихигр. Они начинают с известной статьи Кохенаи Шпекера [42] Kochen S. and Specker E. P. The problem of hidden variables in quantum mechanics // Journal of Mathematics and Mechanics 17:59–87, 1967.
, которую часто называют одной из ключевых работ в процессе становления квантовой логики. Кохени Шпекерпытались с помощью скрытых переменных свести квантовую логику кклассической, то есть делали попытку перевести язык квантовой логики на язык классических теорий — булеву алгебру. Они показали, что это невозможно сделать, построив свой знаменитый контрпример— граф из 117 точек.
Таким образом, квантовая логика тесно переплетается с телепатическими играми квантовой теории.
Привычная для нас классическая логика является лишь частным случаем квантовой и справедлива для незначительной части реальности, описываемой классической физикой. Моментом зарождения квантовой логики как самостоятельного направления в квантовой теории можно считать 1936 год, когда Бирхгови фон Нейман опубликовали статью «Логика квантовой механики» [43] Birkhoff G., Neuman J. Annals of Math 37, 823, (1936).
.
Хотя чуть раньше, в 1932 году, фон Нейман в своей знаменитой книге «Математические основы квантовой механики» [44] Нейман И. фон . Математические основы квантовой механики. М.: Наука, 1964.
уже обратил внимание на возможность существования особой квантовой логики, обобщающей логику классическую: «Наряду с физическими величинами R существует еще нечто, являющееся предметом физики: именно альтернативные свойства системы L ». То есть предметом физики являются не только некоторые конкретные физические величины, полученные при измерении, но и вся совокупность « непроявленных» результатов — тех, которые могли иметь место, но в данном случае не были реализованы.
Основное отличие квантовой логики от классической заключается в том, что в ней состояния физической системы определяются не только конкретными значениями связанных с системой наблюдаемых, но и всей совокупностью альтернативных свойств системы (суперпозицией состояний).
Квантовая логика существенно отличается от булевой. Например, не выполняется закон дистрибутивности в его общей форме. Дистрибутивность операций имеет место лишь для некоторых отдельных множеств, заданных на так называемых совместимых подпространствах гильбертова пространства. Дистрибутивный закон справедлив для попарно совместимых подпространств. С набором совместимых подпространств можно связать проекционные операторы и построить наблюдаемые, которые будут попарно коммутировать, и их можно представить как функцию одного оператора, то есть им соответствуют одновременно измеряемые величины [45] Более подробно см.: Белокуров В. В., Тимофеевская О. Д., Хрусталев О. А. Квантовая телепортация — обыкновенное чудо. Ижевск, 2000. С. 239–249. Сокращенный вариант книги доступен по ссылке http://www.cryptography.ru/db/msg.html?mid=1169218&s=.
.
Квантовая логика сейчас еще только разрабатывается, и пока трудно оценить все возможные последствия нового мышления, но однонесомненно — они будут очень значительны.
В этом отношении многое делается математиками, которые сейчас интенсивно работают над квантовыми алгоритмами и программами для квантового компьютера. Им в какой-то мере проще — не надо думать о физических ограничениях «на железо». Как только появится квантовый компьютер «в железе», у математиков уже будет в запасе большое количество готовых квантовых алгоритмов и программ.
Читать дальше
Конец ознакомительного отрывка
Купить книгу