5.7. «Растворение» макроскопических тел (рекогеренция)
Мы уже достаточно много говорили о декогеренции и реже упоминали об обратном процессе — рекогеренции. Если первый из них отвечает за «проявления» материальных тел из нелокального состояния, то второй, наоборот, связан с «растворением» материи и преобразованием ее в чистую квантовую информацию. Оба этих процесса физики изучают в экспериментальных исследованиях уже довольно давно, манипулируя с небольшими «кусочками» вещества на микроуровне. С макроскопическими телами ситуация более сложная, поскольку они имеют очень много различных степеней свободы, и все их трудно контролировать в эксперименте. Однако с декогеренцией как раз все просто, поскольку происходит она сама собой в результате взаимодействия тел, и все окружающие нас макроскопические объекты можно рассматривать как результат этого процесса. С рекогеренциейдело обстоит сложнее — возникает вопрос: можно ли осуществить ее в случае макроскопических тел? Это означало бы, что мы умеем реализовать такой процесс, в результате которого наш объект постепенно « разуплотняется» и вскоре совсем исчезает из материального мира, целиком переходя в квантовый домен реальности. Теоретических запретов для этого нет, но вот как реализовать его на практике? Чтобы подойти к ответу на этот вопрос, снова вернемся к модели, которая рассматривается в этой главе.
Согласно предложенной теоретической модели, различные составляющие энергетической структуры объекта мы поставили в соответствие тому, что принято называть различными энергиями взаимодействий. Однако использовали этот термин только для того, чтобы как-то «привязаться» к существующему представлению. Принимая за основу наиболее фундаментальный квантовый подход к описанию реальности, необходимо отказаться от предположения, что эта энергия возникает вследствие взаимодействия частиц и якобы не может без них существовать. Наоборот, сами частицы необходимо рассматривать лишь как «уплотнения» в исходно однородной энергетической структуре, появляющиеся в процессе наблюдения, то есть при декогеренции запутанного состояния объекта с наблюдателем (см. также раздел 5.2, где обсуждался этот вопрос). Напомню, что в соответствии с теорией запутанного состояния и теорией декогеренции степень взаимного «проявления» объектов определяется количеством информации, «записываемой» в каждом из них в результате взаимодействия. Иными словами, степень их «овеществления» обусловлена количеством и качеством упорядоченных локальных энергетических неоднородностей, являющихся носителями данной информации, то есть зависит от появившихся «уплотнений». При этом ,если существует несколько качественно различных «наблюдателей» (например, человек и камень), находящихся в собственном пространстве событий, каждый из них по-своему «видит» один и тот же объект. Для каждого из них он состоит из своих «уплотнений».
То, что большинство из нас видит окружающую реальность примерно одинаково, объясняется лишь сходством локальных систем отсчета наблюдателей (пространств событий), поскольку мы обладаем практически одинаковыми органами восприятия.
Можно рассуждать и несколько иначе. Наблюдатель способен извлечь из объекта только ту информацию, которую он в состоянииразличать, которая может быть зафиксирована в его собственном теле. И эта часть объекта становится для него классическим, предметным телом, но те неоднородности, которые он не сумел различить в данном теле, продолжают оставаться для него квантовыми объектами, находящимися в запутанном состоянии. Например, для человека атомы и молекулы как бы не существуют вовсе (они находятся в запутанном состоянии), поскольку его предметные органы восприятия не способны дифференцировать потоки энергии, исходящие от отдельных частиц. Это могут сделать лишь приборы — для них атомы и молекулы уже не квантовые, а классические объекты.
Таким образом, с точки зрения теории запутанных состояний и теории декогеренции, атомы и молекулы не являются неизменными атрибутами системы для различных пространств событий. Они появляются лишь как один из возможных результатов наблюдения в одном из этих пространств. Например, для электронного микроскопа, точнее, для его электронов, которые «исследуют» образец, атомы и молекулы — вполне реальные объекты, извлеченные из запутанного состояния в процессе наблюдения, то есть классического взаимодействия с образцом.
Читать дальше
Конец ознакомительного отрывка
Купить книгу