Но существует ли основное физическое различие (которое должно существовать, как допускали древние в случае с жизнью) между объектами, несущими знание и объектами, не несущими знание, различие, которое не зависит ни от среды, окружающей объекты, ни от их влияния на отдаленное будущее, а зависит только от непосредственных физических качеств этих объектов? Удивительно, но существует. Чтобы его увидеть, необходимо принять перспективу (множественности вселенных) мультиверса.
Рассмотрим ДНК живого организма, например, медведя, и предположим, что где-то в одном из его генов мы обнаруживаем последовательность ТЦГТЦГТТТЦ. Эта частная цепочка из десяти молекул, в специальной нише, состоящей из оставшейся части гена и его ниши, является репликатором. Она реализует небольшой, но важный кусочек знания. Теперь предположим, ради доказательства, что мы можем найти в ДНК медведя (негенетический) отрезок дефективной последовательности, который тоже имеет последовательность ТЦГТЦГТТТЦ. Эту последовательность не стоит называть репликатором, потому что она не делает практически никакого вклада в свою собственную репликацию и не реализует знание. Это случайная последовательность. Итак, у нас есть два физических объекта, два отрезка одной и той же цепочки ДНК, один из которых реализует знание, а другой является случайной последовательностью. Но они физически идентичны . Каким образом знание может быть фундаментальной физической величиной, если один объект обладает им, а другой, физически идентичный первому, им не обладает?
Может, так как эти два отрезка в действительности не идентичны. Они только кажутся идентичными, когда на них смотрят из некоторых вселенных, таких, как наша. Давайте посмотрим на них еще раз так, как они выглядят в других вселенных. Мы не можем наблюдать другие вселенные непосредственно, поэтому нам придется воспользоваться теорией.
Нам известно, что ДНК живых организмов естественно подвержена случайным вариациям – мутациям — в последовательности молекул А, Ц, Г и Т. Согласно теории эволюции адаптации в генах, а следовательно, и само существование генов, зависят от появления таких мутаций. Из-за мутаций популяции любого гена содержат некоторую степень вариаций, и особи – носители генов с более высокой степенью адаптации стремятся оставить больше потомков, чем другие особи. Большая часть вариаций гена делает его неспособным вызывать свою репликацию, потому что измененная последовательность уже не приказывает клетке производить что-то полезное. Остальные вариации просто делают репликацию менее вероятной (т.е. они сужают нишу гена). Однако некоторые могут реализовать новые команды, которые повысят вероятность репликации. Таким образом происходит естественный отбор. С каждым поколением вариации и репликации степень адаптации выживающих генов стремится к возрастанию. В настоящее время случайная мутация, вызванная, например, проникновением космического луча, станет причиной вариации не только внутри популяции организма в одной вселенной, но и между вселенными. Космический «луч» – это высокоэнергетическая дробноатомная частица, и, подобно фотону, испускаемому электрическим фонариком, она перемещается в различных направлениях в различных вселенных. Поэтому, когда частица космического луча проникает в цепочку ДНК и вызывает мутацию, некоторые из ее двойников в других вселенных не попадают в свои копии цепочки ДНК, а другие проникают в эти цепочки в других местах, вызывая, следовательно, другие мутации. Таким образом, проникновение одного космического луча в одну молекулу ДНК в общем случае вызовет в различных вселенных огромное количество различных мутаций.
Когда мы размышляем, как конкретный объект может выглядеть в других вселенных, нам не следует заглядывать в мультиверс так далеко, что распознать двойника этого объекта в другой вселенной станет невозможно. Возьмем, например, отрезок ДНК. В некоторых вселенных совсем нет молекул ДНК. Другие вселенные, содержащие ДНК, настолько не похожи на нашу, что не существует способа распознать, какой отрезок ДНК в этой вселенной соответствует тому отрезку, который мы рассматриваем в нашей вселенной. Бессмысленно задаваться вопросом, как наш конкретный отрезок ДНК выглядит в такой вселенной, поэтому, во избежание появления такой неопределенности, мы должны рассматривать только те вселенные, которые достаточно похожи на нашу. Например, мы могли бы рассматривать только те вселенные, в которых существуют медведи и в которых образец ДНК медведя был помещен в устройство для проведения анализа, запрограммированное на распечатку десяти букв, представляющих структуру в точно определенной позиции относительно конкретных ориентиров точно определенной цепочки ДНК. Последующее обсуждение не имело бы места, если бы нам пришлось выбирать любой другой разумный критерий распознавания соответствующих отрезков ДНК в близлежащих вселенных.
Читать дальше
Конец ознакомительного отрывка
Купить книгу