Однако для Эддингтона работа Пейн была лишь подтверждением той картины, что просто должна была быть на самом деле. Он верил, что Солнце питает тепловая энергия, высвобождаемая при синтезе гелия из водорода, поэтому Солнце обязано было содержать значительное количество водорода, кто бы что ни говорил. Но даже если допустить, что наше светило — это гигантский водородный шар, возникает другая серьезная проблема: для реакций ядерного синтеза Солнце недостаточно горячо.
Как уже отмечалось, при формировании сложносоставного ядра базисные ядерные кирпичики склеиваются воедино посредством сильного взаимодействия, а еще указывалось, что это взаимодействие в нескольких отношениях отличается от силы тяготения. Одно из отличий — то, что сильное взаимодействие в 10 000 триллионов триллионов триллионов раз мощнее гравитационного. Другое же важное отличие заключается в том, что сильное взаимодействие работает на невероятно коротких расстояниях. Пока два ядерных кирпичика не сблизятся настолько, что почти коснутся друг друга, они вообще не почувствуют никакого притяжения. А затем — вжжжик! — их захватывает микроскопическое подобие «притягивающего луча» из «Звездного пути», и вот кирпичики уже сталкиваются лбами с оглушительным треском. Таким образом, чтобы два ядра водорода склеились и получился гелий, нужно заставить эти ядра подойти друг к другу на очень-очень близкое расстояние, а уж потом сильное взаимодействие сделает все остальное. Ну да, заставить два ядра водорода подойти друг к другу… Легко сказать! Из своей планетарной модели атома Резерфорд вывел, что где-то там в ядре должна находиться массивная положительно заряженная частица, которая уравновешивает отрицательный заряд обращающихся вокруг ядра электронов, — «протон». В ядре водорода, легчайшего из атомов, содержится один-единственный протон. Но ведь одноименные заряды отталкиваются. Для того чтобы два протона сблизились и подпали под действие «сильного» ядерного клея, необходимо преодолеть их яростное отталкивание.
Внутри Солнца ядра водорода находятся в бешеном движении. Чем выше температура, тем быстрее движутся протоны и тем сильнее они сталкиваются друг с другом. Но вот насколько должна быть высокой температура, чтобы ядра водорода врезались друг в друга с силой, способной преодолеть их взаимную неприязнь? Эддингтон нашел ответ: около 10 миллиардов градусов. Неужели наше Солнце столь горячо?
Измерение температуры в самом сердце Солнца — если, конечно, не заглянуть туда с термометром в руках — кажется очень трудной задачей. Однако Эддингтон нашел способ оценить эту температуру: он просто допустил, что Солнце — газовый шар, и постарался определить, насколько сжата материя в его центре. Это все та же старая история с велосипедным насосом. Вспомним: то, что Солнце горячее, не имеет никакого отношения к источнику энергии Солнца. Оно горячее просто потому, что содержит колоссальную массу, которая давит на его внутренности. Эддингтон взялся вычислить, насколько горяча масса, находящаяся в самом центре светила, и получил результат: несколько десятков миллионов градусов (по современным данным, около 15 миллионов градусов). Проблема в том, что эта температура примерно в 1000 раз меньше той, что нужна для реакции синтеза гелия из водорода — единственного известного источника энергии, который мог бы обеспечить жар Солнца. Для многих это стало бы серьезным ударом. Однако Эддингтон был убежден, что он на правильном пути. Тем, кто с пренебрежением относился к его идее и утверждал, что Солнце недостаточно горячее для реакции синтеза, он отвечал: «Идите поищите место погорячее» (подразумевалось: «Идите к черту!»).
Спасение пришло с неожиданной стороны: от квантовой теории. Или точнее, от принципа неопределенности Гейзенберга. В 1929 году, в Берлине, английский физик Роберт Аткинсон (1898–1982) и немецкий физик Фриц Хоутерманс (1903–1966) сосредоточились на проблеме: каким образом два ядра внутри Солнца могут подобраться друг к другу настолько близко, что испытают сильное взаимодействие и в результате схлопнутся? Они наглядно представили эту проблему так: когда одно ядро придвигается все ближе и ближе к другому, оно испытывает все более сильное отталкивание, и наконец, когда расстояние совсем невелико, отталкивание внезапно сменяется неодолимой силой притяжения. Это все равно что толкать шар вверх по склону холма, который становится все круче и круче, и вдруг, на самой вершине, обнаруживается шахта, в которую шар и проваливается. С ядром атома внутри Солнца весьма похожая ситуация: это ядро, как и шар, из последних сил толкают к вершине холма; казалось бы, вершина близко, но сил уже нет вовсе, и шар, не докатившись до шахты, никуда не проваливается.
Читать дальше