Но к этой теме мы вернемся в конце книги. Второе начало термодинамики накладывает дополнительные ограничения на взаимный обмен тепла и других форм энергии.
Каким же видом энергии является теплота? в прошлом веке бытовало мнение, что теплота– это жидкость, которая переливается из горячих тел в холодные. Правильное объяснение понятия теплоты было дано только на основе статистической механики. Материальное тело состоит из огромного количества атомов; газ можно представить как совокупность бесчисленных шариков, передвигающихся во все стороны и непрерывно сталкивающихся. Кусок кристалла горного хрусталя (кварца) кажется неподвижным и неизменным. Если бы мы могли заглянуть внутрь и увидеть там атомы, то обнаружили бы, что они расположены упорядоченно вдоль фигур, имеющих ту же симметрию, что кристалл, но они вовсе не неподвижны. Вся кристаллическая решетка непрерывно сотрясается от беспорядочных толчков атомов. Толчки усиливаются с увеличением температуры; при достижении некоторого предела они разрушают кристалл, и он распадается. Тепловая энергия представляет собой не что иное, как сумму энергий беспорядочного движения отдельных атомов; температура, в сущности, говорит нам о том, какая энергия в среднем приходится на один атом в среде.
Смысл энтропии
Примеры, которые мы только что привели, касались превращения энергии упорядоченного движения (электрических зарядов, кинетической энергии движения молота или автомобиля) в тепло, т.е. энергию беспорядочного движения частиц вещества. Во всех случаях мы имели дело с необратимыми процессами: никто еще не видел, чтобы электрическая печь начала вдруг передавать в электросеть свою энергию, охлаждаясь при этом; охлаждая тормоза автомобиля, мы не приведем его в движение и т.д. Все это подтверждает, что очень легко создать беспорядок и очень трудно (или, во всяком случае, требует определенных затрат) создать порядок.
Энтропия, по существу, представляет собой меру этого беспорядка, и, следовательно, при необратимых процессах она всегда растет. При перемешивании горячей воды и холодной ее температура усредняется. Вся энергия распределяется равномерно между молекулами воды. При этом энтропия увеличивается, и мы получаем энергию, более равномерно распределенную и в форме, менее удобной для использования. из таких примеров мы должны извлечь полезный урок. Недостаточно иметь энергию, нужно, чтобы она была в форме, удобной для использования, и, следовательно, не «беспорядочная». Вода в море обладает огромными запасами энергии, которая однако, соответствует беспорядочному движению и которую поэтому нельзя использовать.
Локальное уменьшение энтропии
Существует способ обойти это непрерывное увеличение энтропии, и на нем основана почти вся наша современная техника. Второе начало термодинамики устанавливает общее возрастание энтропии, но вовсе не исключает ее уменьшения в ограниченной области при еще большем увеличении в другом месте. в тепловой электростанции сжигается топливо и производится теплота, которая превращается затем в электрическую энергию, в высшей степени упорядоченную. на самом деле только третья или четвертая часть энергии горения превращается в электричество, в то время как остальная энергия по обыкновению идет на разогрев воды какой-нибудь реки. Итак, за возможность превращать тепло в электричество мы заплатили увеличением энтропии реки. Таким же образом в автомобильном двигателе внутреннего сгорания часть энергии бензина превращается в энергию движения, но гораздо больше ее рассеивается в окружающую среду через радиатор. Итак, общий беспорядок всегда усиливается.
Достаточно оглядеться, чтобы понять, насколько активно человек занимается увеличением энтропии. Почти вся наша деятельность приводит к превращению энергии в формы, все менее приспособленные для использования, и к распределению все более низкой температуры среди все возрастающего количества атомов. Как же мы выживаем в таких условиях?
Энергетическая проблема
Действительно, если вспомнить трудности с арабской нефтью, то возникают сомнения в нашей способности идти и дальше вперед. Человечество создавало развитую передовую технологию, широко и бесконтрольно используя ископаемое горючее и растрачивая при этом заложенную в нем химическую энергию. Эти ископаемые, так же как и ядерное горючее, будут исчерпаны, согласно самым благоприятным прогнозам, не позже чем через 200...300 лет.
Читать дальше