Возьмите обычную трубочку для коктейлей. А теперь вообразите, что она необычайно длина, что при той же ширине она по высоте равна Эмпайр-стейт-билдинг. Поверхность этой трубочки (как и любой другой) имеет два измерения. Длинное вертикальное измерение и короткое круговое измерение, накрученное вокруг трубочки. Теперь представьте, что вы смотрите на эту трубочку с другого берега реки Гудзон (рис. 4.4 а ). Трубочка очень тонкая, она выглядит как вертикальная линия, тянущаяся от земли до неба. Остроты зрения недостаточно, чтобы разглядеть маленькое круговое измерение с такого расстояния, хотя оно есть в каждой точке вдоль всего длинного вертикального измерения. Можно прийти к неправильному выводу, что поверхность трубочки имеет одно измерение, а не два. [22]
Рис. 4.4. а ) Поверхность высокой трубочки имеет два измерения; длинное вертикальное измерение легко увидеть, а малое круговое измерение обнаружить труднее;
б ) Гигантский ковёр имеет три измерения; протяжённые измерения с севера на юг и с запада на восток легко увидеть, а невысокий ворс ковра обнаружить труднее
Или представьте другую визуальную аналогию — огромный ковёр, покрывающий солончаки штата Юта. С высоты птичьего полёта ковёр выглядит как ровная поверхность с двумя измерениями, тянущимися с севера на юг и с запада на восток. Но если спуститься на землю и рассмотреть ковёр вблизи, можно увидеть, что его поверхность покрыта плотным ворсом: крохотные нитяные петельки протянуты в каждой точке ровной основы ковра. У ковра есть два больших, легко видимых измерения (с севера на юг и с запада на восток), но также одно малое измерение (петельки из ниток), которые труднее обнаружить (рис. 4.4 б ).
Из предложения Калуцы — Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость, подобно вертикальной размерности трубочки или географическим измерениям ковра, велики (может даже бесконечны). Однако, если дополнительное пространственное измерение скручено подобно круговому измерению трубочки или ковра и имеет чрезвычайно малый размер — в миллионы или даже в миллиарды раз меньше, чем размер атома, — оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Такое измерение действительно может легко потеряться. Так начиналась теория Калуцы — Клейна , гипотеза о том, что наша Вселенная имеет больше трёх пространственных измерений (рис. 4.5).
Рис. 4.5.Теория Калуцы — Клейна постулирует существование крошечных дополнительных пространственных измерений, прикреплённых к каждой точке обычных больших трёх пространственных измерений. Если бы можно было значительно увеличить структуру пространства, гипотетические дополнительные измерения стали бы видимыми. (Дополнительные измерения прикреплены для пущей ясности только к узловым точкам, изображённым на иллюстрации.)
Из вышесказанного следует, что предложение о «дополнительных» измерениях хоть и непривычно, но всё же не является абсурдом. Неплохое начало, но сразу же возникает вопрос: если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея? Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что одним росчерком пера, в прямом смысле слова, он может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением. Результат изучения модифицированных уравнений оказался настолько захватывающим, что, как вспоминает его сын, Калуца повёл себя непривычным для него образом: отбросив обычную сдержанность, он ударил обеими руками по столу, вскочил на ноги и запел арию из «Женитьбы Фигаро». {32} Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение. О, чудо! Получив это уравнение, Калуца распознал в нём уравнение электромагнитного поля, обнаруженное Максвеллом полувеком ранее.
Читать дальше