Однако, как указывалось выше в историческом обзоре, многие из упомянутых физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше. Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать. Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнуться друг от друга, притом что они электромагнитно притягиваются и гравитационно отталкиваются, — как правило, приводит к ответу бесконечность . И хотя некоторые вещи во Вселенной и могут быть бесконечными, например протяжённость пространства и количество заполняющего его вещества, но вероятности бесконечными быть не могут. По определению, значение вероятности должно находиться между 0 и 1 (между 0 и 100, если считать в процентах). Бесконечная вероятность совсем не означает, что нечто скорее всего произойдёт, или определённо случится; скорее наоборот — это бессмыслица, как говорить об одиннадцатом яйце в десятке. Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно.
Физики выяснили, что проблема коренится в дрожании и флуктуациях из-за квантовой неопределённости. Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Возникли разные математические противоречия, такие как бесконечные вероятности.
Чтобы понять, почему так происходит, представьте, что вы владелец старого дома в Сан-Франциско. Если кто-то из ваших жильцов устраивает слишком бурные вечеринки, вам, наверное, придётся поднапрячься, чтобы привести жильцов в чувство, но вы точно можете не беспокоиться, что пирушка нарушит устойчивость самого здания. Однако, если начнётся землетрясение, вы столкнётесь с более серьёзной проблемой. Флуктуации трёх негравитационных полей — полей, что населяют здание пространства-времени, — подобны неутомимым участникам вечеринок. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие. Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать. {28}
В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал. Редко бывает, чтобы предмет был одновременно и массивный, и малым, так что для его описания необходимо привлекать как квантовую механику, так и общую теорию относительности. Однако подобные ситуации возникают. Когда гравитация и квантовая механика применяются для описания или Большого взрыва или чёрных дыр, то есть когда действительно огромная масса вещества сжимается до небольших размеров, математические методы перестают работать в самый критический момент анализа, оставляя без ответа вопросы, касающиеся того, как Вселенная родилась и как она, возможно, умрёт в центре чёрной дыры.
Более того — и это действительно впечатляюще, — отвлекаясь от озвученных примеров чёрных дыр и Большого взрыва, можно вычислить, насколько массивным и малым должна быть физическая система, для того чтобы и гравитация, и квантовая механика играли существенную роль. Ответ такой — масса, примерно в 10 9раз превышающая массу протона, так называемая масса Планка , сжатая до фантастически малого объёма примерно 10 −99кубического сантиметра (грубо говоря, это сфера с радиусом 10 −33сантиметра с так называемой планковской длиной , как показано на рис. 4.1). {29} Таким образом, расстояние, на котором квантовая гравитация вступает в права, в миллион миллиардов раз меньшее расстояния, достижимого на самых мощных в мире ускорителях. Такая огромная неисследованная территория легко может быть населена новыми полями и их частицами — и кто знает, чем ещё. В целях объединения гравитации и квантовой механики потребуется совершить множество переходов, сталкиваясь с известным и неизвестным на всей этой гигантской территории, которая по большей части остаётся экспериментально недоступной. Такая задача весьма амбициозна и многие учёные были убеждены, что она нерешаема.
Читать дальше