Эта идея универсальна. Бьющееся стекло, гаснущая свеча, расплывающиеся чернила, распространяющийся запах духов: это разные процессы, но их статистическое рассмотрение одинаково. В каждом из них порядок переходит в беспорядок, и это происходит потому, что есть масса способов создать беспорядок. Красота такого анализа — понимание этого вызвало моё самое восторженное «Вот это да!» в процессе моего физического образования — состоит в том, что не теряясь в микроскопических деталях, у нас есть ведущий принцип для объяснения, почему огромное количество явлений происходят так, а не иначе.
Следует отметить, что будучи по своей природе статистическим, Второй закон не утверждает, что энтропия не может уменьшиться, однако такое событие крайне маловероятно. Молекулы только что добавленного в чашку кофе молока могут, в результате своих случайных движений, объединиться в плавающую статуэтку Санта Клауса. Но не дождётесь. Плавающий Санта из молока имеет очень низкую энтропию. Если переместить несколько миллиардов молекул, вы увидите, что у Санты пропала голова или рука, или он растёкся в абстрактный белый завиток. По сравнению с этим конфигурация, в которой молекулы молока однородно распределены по чашке, имеет значительно более высокую энтропию: огромное число перегруппировок по-прежнему выглядит как обычный кофе с молоком. Тогда, с огромной долей вероятности добавленное в ваш чёрный кофе молоко придаст ему однородный коричневатый оттенок, в котором трудно будет разглядеть очертания Санты. Аналогичные рассуждения справедливы для огромного количества переходов от высокой к низкой энтропии, так что кажется, что Второй закон несокрушим.
Второй закон и чёрные дыры
Вернёмся теперь к взглядам Уилера на чёрные дыры. В начале 1970-х годов Уилер заметил, что когда чёрные дыры выплывают на сцену, Второй закон начинает сдавать свои позиции. По-видимому, наличие близлежащей чёрной дыры даёт готовый и надёжный способ уменьшить общую энтропию. Поместите в чёрную дыру любую изучаемую вами систему — битое стекло, потухшую свечку, расплывшиеся чернила. Так как ничего не может покинуть её пределы, беспорядок в системе окажется, по-видимому, навсегда исчезнувшим. Возможно, что такой подход несовершенен, но кажется, он легко понизит энтропию, окажись у вас под рукой чёрная дыра. Многие посчитали, что Второй закон столкнулся с достойным соперником.
Но студента Бекенштейна это не убедило. Возможно, предложил Бекенштейн, энтропия не пропадает в чёрной дыре, а просто каким-то образом в неё трансформируется. Кроме того, никто не утверждал, что поглощая пыль и звёзды, чёрные дыры приводят к нарушению Первого закона термодинамики, сохранению энергии. Наоборот, уравнения Эйнштейна показывают, что при поглощении вещества чёрная дыра становится больше и тяжелее. Энергия может перераспределиться, часть из неё упадёт в чёрную дыру, а часть останется снаружи, но общее количество сохранится. Может быть, предложил Бекенштейн, эта же идея применима и к энтропии. Часть энтропии остаётся снаружи чёрной дыры, а другая часть падает внутрь, но ничего не исчезает бесследно.
Это звучит разумно, но эксперты идею не одобрили. Найденное Шварцшильдом решение и последующие разработки говорят, по всей видимости, о том, что чёрные дыры — это последнее слово в стане порядка. Каким бы перемешанным и неупорядоченным не было падающее внутрь вещество и излучение, оно сжимается в бесконечно малый объём в центре чёрной дыры: чёрная дыра — это окончательный этап в упорядоченном сжатии мусора. По правде говоря, никто не знает, что происходит во время такого мощного сжатия, потому что экстремальная кривизна и плотность делают уравнения Эйнштейна непригодными; однако совсем не кажется, что в центре чёрной дыры может быть какой-то беспорядок. А за пределами своего центра чёрная дыра — просто пустая область пространства-времени, простирающаяся до границы невозврата — горизонта событий (рис. 9.1): Нет никаких снующих туда-сюда молекул и атомов, поэтому перегруппировываться нечему; кажется, что чёрная дыра вообще лишена энтропии.
Рис. 9.1.Чёрная дыра вмещает область пространства-времени, окружённую поверхностью невозврата — горизонтом событий
В 1970-х годах такая точка зрения была подкреплена так называемыми теоремами об отсутствии волос , которые на математическом языке утверждают, что чёрным дырам (подобно лысым фантомасам) недостаёт отличительных характеристик. Согласно этим теоремам любые две чёрные дыры, обладающие одинаковыми массами, зарядами и угловыми моментами (скоростью вращения), неразличимы . В отсутствие характерных отличительных черт — у фантомасов также нет чёлок, усов или дрэдов — чёрные дыры не имеют различий, в которых могла быть запасена энтропия.
Читать дальше