В повседневной жизни мы сталкиваемся с вероятностью, когда видим, что в результате есть несколько возможных вариантов, но по той или иной причине не можем понять, какой из них на самом деле произойдёт. Иногда у нас имеется достаточно информации, чтобы понять, какой из результатов скорее всего произойдёт, и тогда вероятность является тем инструментом, который позволяет дать этому количественную оценку. Наша уверенность в вероятностном подходе возрастает, когда мы обнаруживаем, что результаты, которые считают вероятными, происходят часто, а маловероятные происходят редко. Проблема, стоящая перед многомировым подходом, состоит в том, что необходимо придать смысл вероятности — квантово-механическим вероятностным предсказаниям — в совершенно другом контексте, когда считается, что могут произойти все возможные результаты. Эту дилемму легко сформулировать: как можно говорить о том, что какие-то результаты вероятны, а другие маловероятны, если они все имеют место?
В последующих разделах я остановлюсь на этом более подробно и рассмотрю различные попытки решения. Хочу предупредить: мы сейчас обсуждаем вопросы, которые находятся на самом переднем крае науки, поэтому мнения о том, где мы сейчас находимся, сильно расходятся.
Критика многомирового подхода часто сводится к тому, что этот подход слишком причудлив, чтобы быть правильным. История физики учит нас, что успешные теории просты и элегантны; они объясняют экспериментальные данные на основе минимального количества допущений и приводят к точному пониманию. Теория, в которой вселенные сыплются как из рога изобилия, далека от этого идеала.
Сторонники многомирового подхода справедливо говорят, что при оценке сложности научной теории не следует сосредотачиваться на её следствиях . Значение имеют лишь её фундаментальные свойства. В многомировом подходе считается, что всего одно уравнение — уравнение Шрёдингера — управляет распространением всех волн вероятности, так что по простоте формулировки и экономности допущений с этим подходом трудно соревноваться. Копенгагенский подход никак не проще. Он тоже основан на уравнении Шрёдингера, но при этом содержит туманное, плохо определённое предписание, когда уравнение Шрёдингера не следует применять, и ещё менее понятное описание, касающееся процесса схлопывания волны вероятности, который, как предполагается, имеет место быть. То, что многомировой подход приводит к исключительно богатой картине реальности, говорит о неблагонадёжности теории не более, чем разнообразие жизни на Земле говорит против дарвиновского естественного отбора. Механизмы, фундаментально простые по своей сути, могут привести к сложным заключениям.
Тем не менее, хотя отсюда следует, что бритва Оккама недостаточно остра, чтобы отсечь многомировой подход, переизбыток вселенных действительно приводит к потенциальному затруднению. Ранее я говорил, что физики, применяя какую-нибудь теорию, должны излагать её в двух ипостасях — описывать эволюцию мира с математической стороны, а затем интерпретировать полученные математические результаты с позиции нашего опыта. Но на самом деле есть ещё и третья сторона, связанная с первыми двумя, и физики должны её рассмотреть. Для квантовой механики эта третья сторона выглядит следующим образом: наша уверенность в квантовой механике идёт от её феноменального успеха в объяснении экспериментальных данных. Если физик-теоретик, используя квантовую механику, вычисляет, что при повторении некоторого эксперимента один результат будет возникать, скажем, в 9,62 раза чаще, чем другой, то именно это физик-экспериментатор будет устойчиво наблюдать в своих экспериментах. Перевернув эту фразу, можно сказать, что если эксперимент разойдётся с квантово-механическими предсказаниями, то экспериментаторы придут к выводу, что теория не верна. На самом деле, будучи аккуратными исследователями, они сделают более осторожное заключение. Экспериментаторы скажут, что сомневаются в правильности квантовой механики, но при этом отметят, что их результаты не отвергают эту теорию полностью. Даже для монетки идеальной формы, если её подбросить 1000 раз, может не получиться ожидаемой 50-процентной вероятности выпадения орла или решки. Но чем больше отклонение, тем больше оснований подозревать, что форма монетки отнюдь не идеальна; чем больше экспериментальные отклонения от предсказаний квантовой механикой, тем сильнее экспериментаторы будут подозревать, что теория ошибочна.
Читать дальше