Видя кажущуюся простоту этого решения, позволяющего разрешить конфликт, возникающий между общей теорией относительности и квантовой механикой, вы можете удивиться, почему прошло столько времени, пока ученые не осознали, что точечная модель частиц всего лишь идеализация, и что в реальном мире элементарные частицы имеют некоторые конечные размеры. Это второй момент, на который мы хотели бы обратить внимание. Уже давно некоторые из величайших умов теоретической физики, такие как Паули, Гейзенберг, Дирак и Фейнман, предполагали, что компоненты природы в действительности могут быть не точками, а маленькими, колеблющимися «капельками» или «ядрышками». Однако они, как и другие ученые, столкнулись с тем, что очень трудно построить теорию, фундаментальные компоненты которой не являются точечными частицами, и которая, в то же время, совместима с основополагающими физическими принципами, такими, как сохранение квантово-механической вероятности (согласно которому физические объекты не могут внезапно исчезать из Вселенной без всякого следа) и невозможность передачи информации со скоростью, превышающей скорость света. Снова и снова их исследования с разных точек зрения показывали, что отказ от парадигмы точечных частиц приводит к несоблюдению одного из этих принципов или их обоих. Поэтому в течение долгого времени казалось невозможным построить разумную квантовую теорию, основанную на чем либо ином, кроме точечных частиц. За двадцать с лишним лет глубоких исследований выяснилась поистине впечатляющая особенность теории струн: при всей непривычности некоторых понятий теория струн обладает всеми свойствами, которые должна иметь каждая разумная физическая теория. И, более того, благодаря наличию мод колебаний, реализующих гравитон, теория струн представляет собой квантовую теорию, включающую гравитацию.
Более точный ответ
Грубый ответ ухватывает сущность того, почему теория струн смогла добиться успеха там, где предшествующие теории, основанные на точечной модели частиц, потерпели неудачу. Поэтому без ущерба для понимания дальнейшего можно сразу перейти к следующему разделу. Однако, рассмотрев в главе 2 основные идеи специальной теории относительности, мы получили в свое распоряжение средства, позволяющие более точно описать, как теория струн борется с разрушительными квантовыми флуктуаииями.
В более точном ответе мы будем использовать те же основные идеи, которые содержались в приближенном ответе, но выразим их непосредственно на языке струн. Мы увидим, как конечность размера струн «размазывает» информацию, которую можно было бы получить при зондировании с использованием точечных частиц, и тем самым, к нашему счастью, снимает проблему поведения пространства на ультрамикроскопических расстояниях, ответственную за центральную дилемму современной физики.
Сначала рассмотрим, как происходило бы взаимодействие между точечными частицами, если бы они действительно существовали, и, соответственно, как можно было бы использовать их в качестве физических зондов. Наиболее важным является показанный на рис. 6.5 случай взаимодействия между частицами, движущимися по пересекающимся путям, приводящим к столкновению. Если бы эти частицы были бильярдными шарами, они могли бы столкнуться, после чего каждая из них начала бы двигаться по новой траектории. Квантовая теория поля с точечными частицами показывает, что то же самое происходит при столкновении элементарных частиц — они отскакивают друг от друга и продолжают свой путь по новым траекториям. — однако детали этого процесса отличаются.
Рис. 6.5. Две частицы взаимодействуют: они «сталкиваются между собой», и это приводит к изменению траектории каждой из них.
Для большей определенности и простоты представим себе, что одна из двух частиц является электроном, а другая — ее античастицей, позитроном. При столкновении частицы и античастицы они аннигилируют с выделением энергии в чистом виде, приводящим к образованию, например, фотона9). Чтобы отличать выходящую траекторию фотона от входящих траекторий электрона и позитрона, мы будем, следуя принятому в физике соглашению, изображать ее волнистой линией. Обычно фотон проходит небольшое расстояние, после чего высвобождает энергию, полученную от первоначальной электрон-позитронной пары, путем образования другой электрон-позитронной пары, показанной в правой части рис. 6.6.
Читать дальше
Конец ознакомительного отрывка
Купить книгу