Эйнштейн пытался минимизировать этот отход от позиций классической физики, утверждая, что хотя квантовая механика определенно ставит предел нашему знанию положения и скорости, электрон, тем не менее, имеет определенное положение и скорость в том смысле, который мы привыкли вкладывать в эти слова. Однако в течение последних двух десятилетий прогресс в теоретической физике, достигнутый группой исследователей, возглавляемых ирландским физиком Джоном Беллом, и экспериментальные данные Алана Аспекта и его коллег убедительно продемонстрировали, что Эйнштейн был не прав. Про электроны, как и про любые другие частицы, нельзя одновременно сказать, что они находятся в таком-то месте и имеют такую-то скорость. Квантовая механика показывает, что это утверждение не только не может быть проверено экспериментально (по причинам, объясненным выше), но оно, кроме того, прямо противоречит другим, совсем недавно полученным экспериментальным данным.
В действительности происходит так: если вы поместите электрон в большую коробку и затем начнете медленно сдвигать ее стенки, чтобы определить его положение с увеличивающейся точностью, вы обнаружите, что движение электрона будет становиться все более и более неистовым. Электрон, будто охваченный своего рода клаустрофобией, будет возбуждаться все сильнее — отскакивая от стенок коробки со все возрастающей и непредсказуемой скоростью. Природа не позволяет загнать в угол свои компоненты. Как вы помните, в Н-баре, где мы сделали значение гораздо большим, чем оно есть в реальном мире, чтобы квантовые эффекты могли непосредственно влиять на объекты реального мира, кубики льда в напитках Джорджа и Грейс находились в неистовом движении, как будто тоже страдали от квантовой клаустрофобии. Хотя Н-бар является фантазией — в действительности значение исчезающе мало — точно такая же квантовая клаустрофобия является неотъемлемым свойством микромира. Движение микрочастиц становится все более хаотическим, по мере того как их положение ограничивается при исследовании все меньшими областями в пространстве.
Соотношение неопределенностей лежит в основе еще одного потрясающего явления, известного под названием квантового туннелирования. Если вы выстрелите пластиковой пулей в бетонную стенку толщиной в десять футов, то результат будет полностью соответствовать и вашим интуитивным представлениям, и классической физике: пуля отскочит назад. Причина состоит в том, что у пули просто недостаточно энергии, чтобы пробить такое прочное препятствие. Однако если перейти на уровень фундаментальных частиц, то, как совершенно определенно показывает квантовая механика, в волновую функцию (или, иначе, вероятностную волну) каждой составляющей пулю частицы заложена небольшая вероятность того, что эта частица может пройти сквозь стену. Это означает, что существует маленькая, но ненулевая, вероятность того, что пуля на самом деле сможет пройти сквозь стену и оказаться на другой стороне. Как такое может случиться? Причина снова содержится в соотношении неопределенностей Гейзенберга.
Чтобы понять это, представьте, что вы живете в полной нищете и вдруг узнаете, что ваш дальний родственник отошел в лучший мир, оставив вам огромное состояние. Единственная проблема состоит в том, что у вас нет денег для покупки билета на самолет. Вы объясняете ситуацию своим друзьям: если они помогут вам преодолеть барьер между вами и наследством, ссудив деньги на билет, вы вернете им долг с процентами после возвращения. Но ни у кого нет денег, чтобы дать вам в долг. Тут вы вспоминаете про вашего старого друга, который работает в авиакомпании, и обращаетесь к нему с той же просьбой. Он тоже не может дать вам денег взаймы, но предлагает другое решение. Система учета в авиакомпании такова, что если вы вышлете деньги в уплату за билет телеграфным переводом в течение 24 часов с момента прибытия в пункт назначения, никто не узнает, что вы не уплатили их до вылета.
Система учета в квантовой механике довольно схожа с этой. Показав, что существует компромисс между точностью измерения местоположения и скорости, Гейзенберг, кроме того, продемонстрировал существование компромисса между точностью измерения энергии и тем, сколько времени занимают эти измерения. Согласно квантовой механике вы не можете утверждать, что частица имеет в точности такую-то энергию в точно такой-то момент времени. За возрастающую точность измерения энергии приходится платить возрастающей продолжительностью проведения измерений. Грубо говоря, это означает, что энергия частицы может флуктуировать в очень широких пределах, если измерения проводятся в течение достаточно короткого периода времени. Поэтому точно так же как система учета в авиакомпании «позволяет» вам занять «деньги» на билет при условии, что вы вернете их достаточно быстро, квантовая механика «позволяет» частице «занять» энергию при условии, что она может вернуть ее в течение промежутка времени, определяемого сотношением неопределенностей Гейзенберга.
Читать дальше
Конец ознакомительного отрывка
Купить книгу