Рассмотрим подробнее коллапс вращающейся звезды. Прежде всего, нам известно, что если звезда вращается, то по мере сжатия она будет вращаться всё быстрее в соответствии с законом сохранения момента импульса. Это хорошо знают фигуристы: начав вращение с раскинутыми руками, они прижимают их к груди, увеличивая свою скорость. У коллапсирующей звезды, даже при небольшой скорости вращения (такой, как, например, у Солнца), к концу коллапса скорость возрастает настолько, что, не успев стать чёрной дырой, такая звезда разлетится. Для того чтобы превратиться в чёрную дыру, звезда должна уменьшить скорость вращения, и, очевидно, со многими именно так и происходит. Поэтому логично предположить, что большинство массивных звёзд превращаются в чёрные дыры Керра.
Чёрная дыра Керра
Предсказаны ещё два типа чёрных дыр. Возможно, в природе их и нет, но теоретически они очень важны. Когда звезда превращается в чёрную дыру, почти все её характеристики растворяются в сингулярности. Мы никогда точно не узнаем ни её температуру, ни состав: они утрачиваются при превращении звезды в чёрную дыру. Остаются только три характеристики: масса, момент вращения и заряд. Это и определяет существование четырёх типов чёрных дыр. Кроме чёрных дыр Шварцшильда и Керра существуют чёрные дыры Рейснера-Нордстрема (невращающиеся заряженные) и чёрные дыры Керра – Ньюмена (вращающиеся заряженные).
В 1971 году английский теоретик Роджер Пенроуз доказал, что из чёрных дыр, обладающих спином и (или) зарядом, можно извлекать энергию. Если в эргосферу запустить, к примеру, шарик, то он разорвётся. При этом часть его попадёт за горизонт событий, тогда как другая окажется во внешнем пространстве, причём энергия этой части будет больше, чем у всего шарика, первоначально попавшего в эргосферу. Таким образом, из чёрной дыры будет извлечена некая энергия. В случае чёрной дыры Керра эта потеря энергии выразится в замедлении вращения.
В поисках чёрных дыр
До сих пор мы рассматривали чёрные дыры в теоретическом аспекте. А существуют ли они на самом деле? Этот вопрос начал занимать астрономов в середине 60-х годов. Многие не верили в их реальность, и до сих пор кое-кто сомневается в этом. В конце концов общая теория относительности – всего лишь теория, хотя многие учёные считают её превосходной и уверены в правильности её предсказаний. Возможно, впрочем, что когда-нибудь на её место придёт новая теория, в которой чёрных дыр такого типа не будет, а значит, нужно подобрать кандидата на эту роль. Но где его искать? И, главное, стоит ли этим заниматься? Что если в нашей Галактике их окажется слишком мало, и нам так и не удастся найти хоть одну? Начнём с конца: сколько чёрных дыр может быть в нашей Галактике?
Важным фактором является, конечно, время. Достаточно ли времени прошло для образования большого числа чёрных дыр? Мы знаем, что продолжительность жизни нашего Солнца составляет около 10 миллиардов лет, а сейчас ему около 4,5 миллиардов. Но чёрные дыры получаются из звёзд, намного более массивных и развивающихся гораздо быстрее, чем наше Солнце. Большинство массивных звёзд заканчивает свой жизненный цикл меньше чем за миллиард лет. Значит, время на нашей стороне.
Затем следует определить число массивных звёзд в нашей Галактике. Конечная масса, равная трём солнечным, – вот всё, что нужно для превращения звезды в чёрную дыру. Но большинство звёзд теряет часть массы как до, так и в процессе коллапса, и, значит, чёрная дыра с массой, равной трём солнечным, появилась при коллапсе звезды, начальная масса которой была существенно больше этого значения, например, раз в восемь больше массы Солнца. К счастью, даже такие значения не являются чрезмерными для нашей Галактики. В нашей Галактике около 200 миллиардов звёзд, а её возраст насчитывает 15-16 миллиардов лет. Сколько в ней может быть чёрных дыр? У нас нет точных данных, чтобы оценить их число, и потому оценка может быть только приблизительной. Предположим для начала, что каждые 100 лет образуется одна чёрная дыра. Такое предположение основано на наших представлениях о распределении звёзд в Галактике и об их жизненном цикле. С помощью этих данных можно подсчитать общее число чёрных дыр: получится несколько сот тысяч; возможно, мы ошибёмся на несколько порядков, но всё-таки есть надежда, что поиски не лишены смысла.
Читать дальше