W' = Q' + H' = Qʺ + Нʺ + Lʺ = Wʺ. (2.2)
Поскольку по первому закону все виды энергии эквивалентны, легко подсчитать значения каждой из этих величин в одних и тех же единицах (калориях, джоулях или киловатт-часах).
Из уравнения (2.2) следует, что отводимая работа в точности равна сумме изменений энергии рабочего тела и теплоты:
Lʺ = (Q' — Qʺ) + (H' — Нʺ). (2.3)
Подсчитав их, мы найдем работу двигателя, равную Lʺ.
Из первого закона термодинамики следует, что получаемая работа не может быть ни меньше, ни больше Lʺ.
Первый случай (W' > Wʺ) нас здесь не интересует, хотя он — тоже нарушение закона сохранения (энергия исчезает), но второй (энергия берется «ниоткуда») как раз и соответствует ppm-1. Такое устройство существовать не может.
Мы взяли для анализа общий, сложный случай — с теплотой и потоком вещества (в дальнейшем он понадобится тоже). Однако все рассмотренные в гл. 1 двигатели проще — они не связаны ни с тем, ни с другим [31] Циркулирующее внутри рабочее тело (например, вода) не учитывается, так как оно не проходит через контрольную поверхность.
. Дня них уравнения (2.2) или (2.3) будут выглядеть более просто, так как (Q = 0 и H = 0, а следовательно, и W' = 0. Тогда и
Wʺ = Lʺ = 0, (2.4)
и работа этих устройств должна быть равна нулю. Если же изобретатель утверждает, что L ≠ 0, то это будет только воображаемое, в реальности не могущее действовать устройство, противоречащее условию (2.4), т. е. ppm-1 (рис. 2.5, б).
Таким образом, первый закон термодинамики позволяет не вникать в детали устройства для того, чтобы определить — будет двигатель работать или нет. Нужно просто «заключить» его внутрь контрольной поверхности и подсчитать, сколько всего входит энергии (W) и сколько выходит (Wʺ), и если выходит больше, чем входит (Wʺ > W'), то дискуссия закончена. Налицо нарушение закона природы: получение энергии из ничего. Вечный двигатель первого рода невозможен.
Естественно, что все, о чем говорилось выше, относится к любой технической или биологической системе: выходящая за определенный отрезок времени энергия Wʺ должна быть равна входящей W'. В каждую из них, разумеется, нужно включить все потоки энергии, независимо от их вида. Кроме того, в общем случае нужно учесть и накопление (или расходование) внутренних запасов энергии ΔU:
Wʺ = W' — ΔU. (2.5)
Сказанное можно пояснить простым примером. Возьмем такую биологическую систему, как медведь. Осенью он поглощает с пищей (H’ = W') большее количество энергии, чем расходует (с теплотой Qʺ и работой Lʺ). Поэтому он накапливает с жировыми запасами энергию ΔU. Следовательно, осенью его энергетический баланс активный: W ОС= Н' ОС> Wʺ ОС= Lʺ ОС+ Qʺ ОС. Однако зимой, во время спячки в берлоге, он вообще не получает энергию извне (W' = 0); расход энергии включает работу Lʺ = 0 (на дыхание, изменение позы и сосание лапы — он очень мал) и теплоту Qʺ = 0 для поддержания микроклимата в берлоге. Весь этот расход энергии Wʺ = Lʺ + Qʺ компенсируется уменьшением ее запасов ΔU. Следовательно, энергетический баланс для этого периода будет иметь вид 0 = Wʺ + ΔU или Qʺ + Lʺ = — ΔU. Чтобы он соблюдался, величина ΔU должна быть отрицательной: запас внутренней энергии будет уменьшаться.
Первое начало термодинамики представляет собой мощное средство как научного познания природы, так и создания «второй природы» — техники. Дня уже существующих систем оно позволяет проверить правильность любых теорий или результатов экспериментов, связанных с энергетикой. Если баланс по теории или по измерениям не сходится, значит, где-то допущена ошибка. Дня вновь изобретенных систем проверка их энергетического баланса обязательна. Если W' ≠ ΔU + Wʺ, то система существовать не может. При W' > ΔU + Wʺ энергия в ней «уничтожается», а при W' < ΔU + Wʺ — «возникает» из ничего (ppm-1). Первый закон показывает, что все это абсолютно невозможно, или, как иногда говорят, запрещено.
Казалось бы, полное и безоговорочное утверждение закона сохранения энергии и его все более широкая популяризация должны были привести к сокращению потока вновь изобретаемых ppm-1. К тому же «его величество пар» снял на долгое время проблему универсального двигателя. Однако существенного влияния на большинство изобретателей ppm-1 все это до конца первой четверти XX в. не оказало. Штурм неразрешимой задачи продолжался.
2.3. Последние вечные двигатели первого рода
Приведем для начала некоторые статистические данные по ppm-1, относящиеся к интересующему нас периоду. Естественно, они носят отрывочный характер, но все же достаточно показательны.
Читать дальше