В 30—40-х годах широкое распространение получили разборные генераторные лампы. Дело в том, что катоды ламп были недолговечны, а все остальные довольно металлоемкие и дорогие конструкции — анод, сетка, система водяного охлаждения — служили долго. Поэтому родилась мысль сконструировать лампу так, чтобы иметь возможность менять вышедшие из строя детали. В пятидесятых годах мощность таких ламп достигла 1000 киловатт. И если раньше большие радиостанции строились по блочному принципу (например, 500-кило-ваттное радиопередающее устройство, установленное на станции имени Коминтерна, собиралось из шести однотипных передатчиков по сто киловатт, и их мощности складывались), то теперь для тысячекиловаттной радиостанции достаточно было одного выходного каскада на такой лампе. Именно в мощных радиопередатчиках, будь то радиовещательные или радиолокационные, лампы пока не уступают своих позиций полупроводникам.
«Супер» — так жаргонно называли радиолюбители 40—50-х годов супергетеродинный приемник. Сейчас, за редким исключением, все радиоприемники, будь то бытовые, телевизионные, связные, радиолокационные и других назначений, строятся по супергетеродинной схеме. А в период зарождения радиовещания господствовали простые в изготовлении детекторные приемники.
Их основным элементом был кристаллический детектор, который выпрямлял электрические колебания радиочастоты, наведенные в антенне радиоволной и выделенные резонансным контуром. В выпрямленном напряжении содержались колебания звуковых частот, которые в телефонных наушниках превращались в звуковые сообщения.
Кристаллический детектор был первым в современном понимании полупроводниковым прибором. Он пришел на смену капризному и ненадежному когереру. Хотя точная дата рождения кристаллического детектора не установлена (примерно 1906 год), можно с полным основанием сказать, что появился он как нельзя вовремя. С его помощью значительно расширилась аудитория радиослушателей.
Помимо простоты детекторный приемник обладал еще одним немаловажным достоинством: для него не требовалось источника питания. Энергию приносила сама радиоволна.
С совершенствованием радиоламп, естественно, проявилось давнее намерение услышать речь и музыку как говорят, «во весь голос». Пристроили после детектора усилитель низкой частоты (или сокращенно УНЧ) и стали слушать уже не в наушниках, а из громкоговорителей (динамиков). Потекла живая человеческая речь по комнатам, залам, площадям…
Чтобы увеличить дальность приема, стали усиливать радиочастотные колебания и до детектора поставили усилители радиочастоты (УРЧ). Вот вам и знаменитый приемник «прямого усиления», где радиочастотный сигнал усиливается, затем детектируется и опять следует усиление, но только уже на низкой, звуковой частоте. Эти приемники были в ходу у радиолюбителей еще в 50-х годах. Названия их звучали несколько таинственно: 1— V — 2, 1— V— 1, 0 — V — 2. Первая цифра означала число ламп для усиления радиочастоты, последняя — число ламп для усиления низкой частоты, а буква V означала детектирование.
В таком приемнике избирательность, то есть способность отстраиваться от сигналов соседних радиостанций, достигалась настройкой входного колебательного контура прямо на частоту нужной станции, и основное усиление до детектирования тоже производилось па этой частоте. Оттого и назывался такой приемник приемником прямого усиления. Покуда радиостанций было мало и использовались в основном длинные волны, особых проблем не возникало. Но как только началось освоение коротких волн, сразу же проявился недостаток схемы — стало нелегко отстроиться от других радиостанций, поскольку чем выше частота, тем шире становится полоса пропускания резонансного контура. Таково уж его свойство. (С ним мы немного познакомились, когда речь шла об опытах Герца.)
Если уподобить радиоприемник стадиону, а колебательный контур — его воротам, то чем шире полоса пропускания контура, чем шире ворота стадиона, тем больше шансов у безбилетников, то бишь сигналов других, мешающих станций и прочих разных источников помех проникнуть в приемник.
Крутишь ручку настройки приемника: чем короче длина волны, тем труднее избавиться от мешающих «соседей». Мало того, и слышимость падает. Голос в приемнике слабее от того, что усиление каскадов УР^ уменьшается с повышением частоты Дело в том, что на более высоких частотах выводы электродов, сами электроды ламп начинали вести себя как конденсаторы и тем самым уменьшали усиление.
Читать дальше