Представьте себе, что прошло 5999 лет, а какой-то атом углерода‑14 еще не распался, и мы сравниваем его с новеньким атомом, который только что возник в атмосфере. Как вы считаете, который из них распадется первым? Интуитивно кажется, будто тот, который старше, распадется скорее, что ему давно пора. А почему, собственно? Магия симметрии замещения тождественных частиц в том и состоит, что на первом атоме не стоит даты изготовления и срока годности и невозможно определить, что он существует уже какое-то время.
Можно сделать и следующий шаг. Предположим, за долгие тысячелетия, пока я сидел и ждал, когда же распадутся отдельные атомы углерода‑14, я несколько заскучал. А пока я отвлекся, прибежал лукавый чертенок, то есть вы, и поменял местами два атома — один только что созданный, а другой в возрасте почти шести тысяч лет.
Мы уже разобрались, что ни к чему очевидному в случае атомов такая подмена не приведет. Мы не знали, какой из атомов распадется первым, до того, как вы поменяли их местами, и до сих пор не знаем. Но не это главное: даже если вы продумали подмену досконально и проследили, чтобы и состояния атомов в точности совпадали, и если замещение частиц — это абсолютная симметрия вселенной (так и есть), значит, не существует никакого физического механизма, который позволил бы мне обнаружить подмену.
В начале главы я перечислил несколько законов квантовой механики, и пора к ним вернуться. Вспомните, в частности, квантовую волну. Если бы мы смогли описать волновую функцию всей вселенной в каждый момент, у нас были бы все вероятности, чтобы обнаружить что угодно где угодно. Легко представить себе, что единственный суперкомпьютер, у которого хватит мощности проделать подобные вычисления — это и есть сама вселенная.
А теперь представьте себе, что мы подменяем один атом другим и при этом приводим их квантовые состояния в точное соответствие друг другу. Ни один эксперимент во вселенной не позволит отличить подменыша от оригинала — это идеальная симметрия в том смысле, в каком ее определил в начале этой книги Герман Вейль.
Симметрия замещения тождественных частиц — это один из важнейших шагов в структурировании нашего представления о вселенной, установление, которое подведет нас к следующей главе, а в конечном итоге — к объяснению, откуда взялись тяжелые элементы и вся химия на свете.
Чтобы взять с места в карьер, нам нужно кое-что узнать о том, как устроены волны — любые волны, и звуковые, и световые, и водяные, и вероятностные квантовомеханические. Им всем писан один закон: если удвоить амплитуду волны, сила (громкость звука, яркость света, вероятность обнаружения) возрастает в четыре раза. Точнее, сила волны пропорциональна квадрату амплитуды.
Есть ровно два способа сделать так, чтобы вероятность после подмены не изменилась. Надо умножить волновую функцию либо на единицу, либо на минус единицу. Одни частицы выбирают положительный маршрут, другие отрицательный, и то, какая какой маршрут выберет, оказывается, приводит к колоссальным последствиям.
Не будет преувеличением сказать, что своим существованием вы обязаны минусу. А чтобы понять, как так вышло, нам придется еще дальше углубиться в царство спина.
Глава восьмая. Спин
В которой мы разберемся, почему вы не представляете собой облако разумного гелия и что с вами сделает чайная ложка нейтронной звезды
Представьте себе, что вы на роскошном банкете, а рядом с вами посадили физика. Придется напрячь воображение: на подобные мероприятия нас обычно не зовут. Чтобы помочь своему новому другу-физику расслабиться, вы битый час слушаете его бормотание, а потом решаете бросить ему кость и называете его теорию «элегантной». Больше от вас ничего не требуется. Он ваш верный друг до гробовой доски.
Элегантности в одежде и манерах нам добиться трудно, зато она заложена в самом центре симметрии и в сердце физики. И несмотря на то, что физика частиц во многом состоит из длиннейших списков, обитатели зоопарка частиц — существа на диво простые. Численных величин совсем немного, зато они говорят вам все, что нужно знать. Среди них есть очевидные — масса и заряд. Есть и не такие очевидные — цвет и аромат, которыми мы займемся в следующей главе. А есть и совсем неуловимая — спин.
Спин — дело настолько тонкое, что это будет единственная глава, из которой вы не узнаете ни о какой новой симметрии. Уж извините. Однако есть и хорошая новость — зато мы увидим, что следствия из симметрии замещения тождественных частиц для разных частиц совсем разные, а из-за этого разные виды частиц и ведут себя по-разному. А в конце вообще рванет, так что не отвлекайтесь.
Читать дальше
Конец ознакомительного отрывка
Купить книгу