Переход от вещества белых карликов к веществу нейтронных звезд начинается, согласно вычислениям Гаррисона — Уилера, при плотности 4x10 11граммов на кубический сантиметр. Вычисления показывают несколько фаз перехода. В первой фазе электроны начинают вжиматься в атомные ядра, и их заглатывают протоны ядер, превращаясь в нейтроны. Вещество, потеряв, таким образом, часть электронов, поддерживающих давление, внезапно становится намного менее стойким к сжатию. Это вызывает резкий обрыв в уравнении состояния (см. диаграмму выше).
В процессе развития этой фазы сжатия атомные ядра становятся все более насыщенными нейтронами, что вызывает вторую фазу: нейтроны начинают просачиваться (выдавливаться) из ядер в межядерное пространство, где еще осталось немного электронов. Эти просочившиеся нейтроны, как и электроны, противодействуют продолжающемуся сжатию собственным давлением вырождения. Это нейтронное давление вырождения прекращает обрыв в уравнении состояния, сопротивление сжатию возвращается и начинает увеличиваться. В третьей фазе, при плотности приблизительно между 10 12и 4x10 12граммов на кубический сантиметр, все пересыщенные нейтронами ядра полностью распадаются, т. е. разваливаются на отдельные нейтроны, образующие нейтронный газ, изученный Оппенгеймером и Волковым, с малой примесью электронов и протонов. С этого момента при повышении плотности уравнение состояния принимает вид уравнения состояния Оппенгеймера — Волкова нейтронных звезд (штриховая кривая на диаграмме, если ядерные силы игнорируются; сплошная кривая, если воспользоваться лучшим пониманием ядерных сил 1990-х).
* * *
Имея на руках это уравнение состояния холодного мертвого вещества, Джон Уилер попросил Масами Вакано, постдока из Японии, проделать то же, что сделал для нейтронных звезд Волков, а для белых карликов Чандрасекар: соединить уравнения состояния с уравнениями общей теории относительности, описывающими баланс гравитации и давления внутри звезды. Потом из этого соединения получить дифференциальное уравнение, описывающее структуру звезды, а затем численно решить это дифференциальное уравнение. Численные расчеты раскроют детали внутренней структуры всех холодных, мертвых звезд и, что самое важное, определят звездные массы.
5.5. Окружности (по горизонтали), массы (по вертикали) и плотности (обозначены на кривой) в центре холодных мертвых звезд в соответствии с расчетами М.Вакано, сделанными под руководством Дж. Уилера с использованием уравнения состояния. Сплошная линия — современная кривая, полученная по данным 1990-х годов и правильно учитывающая ядерные силы, т. е. при центральных плотностях, превышающих плотность атомного ядра (больше 2х10 14г/см 3), штриховая линия — кривая, полученная Оппенгеймером и Волковым без учета ядерных сил
Вычисления структуры отдельной звезды (распределение энергии, давления и гравитации внутри звезды) потребовали от Чандрасекара и Волкова многодневного напряженного труда, когда в 1930-х годах они били по кнопкам своих механических калькуляторов в Кембридже и Беркли. Тогда как Вакано в Принстоне в 50-х имел в своем распоряжении один из первых в мире цифровых компьютеров MANIAC (комнату набитую электронными лампами и проводами), который был сооружен в Принстонском институте передовых исследований для расчетов, связанных с созданием водородной бомбы. С помощью MANIAK Вакано мог «перемалывать» расчеты структуры каждого типа звезд менее чем за час.
Результаты вычислений Вакано показаны на рис. 5.5. Этот рисунок представляет собой окончательный каталог холодных мертвых объектов и отвечает на все вопросы, поднимавшиеся ранее в этой главе.
На диаграмме рис. 5.5 окружность звезды отложена по оси вправо, а ее масса — вверх. Каждая звезда с окружностью и массой, которые попадают в светлую область рисунка, имеет внутренние силы гравитации, превышающие давление, и потому гравитация звезды будет заставлять звезду сжиматься и перемещаться влево на этой диаграмме. Каждая звезда в заштрихованной области имеет давление, превосходящее гравитацию, и поэтому ее давление будет заставлять звезду расширяться при движении по диаграмме вправо. Лишь на границе между заштрихованной и светлой областями гравитация и давление точно уравниваются, и, таким образом, граничная кривая представляет собой кривую холодных, мертвых звезд в состоянии равновесия давления и гравитации.
Читать дальше