Так же как Цвикки мог представить себе подпитку сверхновой энергией, освобождаемой при схлопывании нормальной звезды, так и Ландау мог предположить, что Солнце и другие нормальные звезды питаются энергией, высвобождающейся, когда их атомы один за другим захватываются нейтронным ядром (рис. 5.4).
Захват атома нейтронным ядром во многом похож на падение камня с большой высоты на цементную плиту: гравитация тянет камень вниз, ускоряя его до большой скорости, и когда он ударяется о плиту, его огромная энергия движения может раздробить камень на тысячи осколков. Точно так же, рассуждал Ландау, гравитация должна сильно ускорять и атомы, падающие на нейтронное ядро звезды. Когда такой атом врезается в ядро, эта разрушительная остановка преобразует его гигантскую энергию движения (энергию, эквивалентную 10 процентам его массы) в тепло. В таком сценарии конечным источником солнечного тепла является рост гравитации его нейтронной сердцевины; и так же, как и в случае сверхновых Цвикки, гравитация ядра обеспечивает 10-процентную эффективность преобразования массы падающих атомов в тепло.
Врезка 5.3
Сравнение ядерного и обычного горения
Обычное горение — это химическая реакция. В химических реакциях атомы соединяются в молекулы, атомы делят между собой электронные облака, которые и скрепляют молекулы. Ядерное горение — это ядерная реакция. В ядерном горении атомные ядра соединяются вместе, синтезируя (термоядерный синтез) более массивные атомные ядра, которые скрепляются ядерными силами.
Следующая диаграмма показывает пример обычного горения: горение водорода с образованием воды (взрывное сильное горение, которое используется в некоторых ракетах для выведения грузов в космос). Два водородных атома объединяются с атомом кислорода и образуют молекулу воды. В молекуле воды атомы водорода и кислорода делят электронные облака между собой, но атомные ядра существуют отдельно.
Следующая диаграмма показывает пример ядерного горения: слияние ядра дейтерия («тяжелый водород») и обычного ядра водорода с образованием ядра гелия-3. Это одна из реакций синтеза, которая, как теперь известно, питает Солнце и другие звезды и дает энергию водородным бомбам (Глава 6). Ядро дейтерия содержит один нейтрон и один протон, связанные ядерной силой, ядро водорода состоит из единственного протона; ядро гелия-3 возникшее при слиянии, содержит один нейтрон и два протона.
Распад ядерного топлива (Врезка 5.3), в отличие от захвата атомов нейтронным ядром звезды (рис. 5.4), может преобразовать в тепло лишь несколько десятых массы исходного ядерного горючего. Другими словами, источник тепла Эддингтона (ядерная энергия) является пример но в 30 раз менее мощным, чем источник Ландау (гравитационная энергия). [70] Это может показаться удивительным тем, кто думает, что ядерные силы гораздо мощнее, чем гравитационные. В действительности ядерная сила мощнее, лишь когда в вашем распоряжении имеются только несколько атомов или атомных ядер. Но когда у вас несколько солнечных масс, состоящих из атомов (10 57 атомов) или более, общая гравитационная сила всех атомов может стать сокрушительной по сравнению с их ядерными силами. Как мы увидим позже, этот простой факт гарантирует, в конце концов, что огромная гравитация умирающей массивной звезды превозмогает отталкивание атомных ядер и сжимает их, образуя черную дыру.
В действительности в 1931 г. Ландау разработал более примитивную версию своей идеи нейтронного ядра. Однако тогда нейтрон еще не был открыт, и устройство атомного ядра оставалось загадкой: поэтому энергия захвата атома ядром звезды в модели 1931 г. высвобождалась в ходе совершенно умозрительного процесса, основанного на (неверном) предположении, согласно которому законы квантовой механики в атомном ядре могут нарушаться. Теперь, через пять лет после открытия нейтрона, когда начали понимать свойства атомного ядра, Ландау мог сделать свою идею гораздо более точной и убедительной. Представляя ее миру с рекламной помпой, он мог отразить натиск сталинских репрессий.
* * *
В конце 1937 г. Ландау написал работу, описывающую идею нейтронного звездного ядра; чтобы привлечь к ней максимальное общественное внимание, он предпринял серию необычных шагов. Он направил ее в журнал Доклады Академии наук СССР для издания на русском языке, параллельно английский вариант статьи отослал тому же знаменитому западному физику, к которому апеллировал Чандрасекар, когда на него нападал Эддингтон, — Нильсу Бору в Копенгаген. (Бор, как почетный член Академии наук СССР, был более или менее приемлем в качестве авторитета, даже во время Великого террора.) Вместе с рукописью Ландау послал Бору следующее письмо:
Читать дальше