14.2. Эволюция совершенно сферической червоточины, внутри которой нет вещества. (Эта эволюция — результат решения уравнения поля Эйнштейна, полученного в середине 1950-х годов Мартином Крускалом, молодым сотрудником Уилера в Принстонском университете.) (д) Вначале червоточины нет. Вместо этого существует одна сингулярность возле Земли и другая — возле Веги. Затем, в некоторый момент времени (б), обе сингулярности дотягиваются друг до друга через гиперпространство, находят друг друга и аннигилируют друг в друге. В результате этой аннигиляции возникает червоточина. Поперечный размер ее растет (в), затем начинает сжиматься (г) и стягивается в точку ( д ), создавая две сингулярности (е), похожие на те, из которых она когда-то и возникла. Но есть одна существенная разница — каждая начальная сингулярность (д) похожа на ту, что была при Большом взрыве: время истекает из нее, давая начало последующим событиям: после Большого взрыва возникает Вселенная, а в нашем случае возникает червоточина. В отличие от этого, каждая конечная сингулярность ( е ) похожа на Большой хруст (глава 13); время в нее втекает, и на этом все заканчивается: Вселенная в результате Большого хруста и червоточина в нашем случае. Все, что пытается пройти через червоточину за время ее короткой жизни, оказывается захваченным в момент стягивания и уничтоженным вместе с самой червоточиной в конечных сингулярностях ( е)
Чтобы упростить вычисления, я рассмотрел идеализированную, совершенно сферическую червоточину (как на рис. 14.1, где наша трехмерная Вселенная представлена в двумерном виде, а червоточина — совершенно круглая в поперечном сечении). В результате двух страниц вычислений на основе уравнения поля Эйнштейна я открыл три вещи.
Во-первых, единственный способ удержать червоточину открытой — пропустить через нее вещество, которое будет расталкивать ее стенки гравитационными силами. Я буду называть такое вещество экзотическим, потому что, как мы увидим, оно сильно отличается от любого вещества, с которым когда-либо имел дело человек.
Во-вторых, я обнаружил, что точно так же, как экзотическое вещество расталкивает стенки червоточины, оно будет расталкивать гравитационными силами лучи света, проходящие через него. Другими словами, экзотическое вещество будет вести себя подобно дефокусирующей линзе; оно расфокусирует световой пучок гравитационными силами (см. Врезку 14.1).
В-третьих, я понял из уравнения поля Эйнштейна, что для того чтобы расфокусировать гравитационными силами световые пучки и раздвинуть стенки червоточины, экзотическое вещество в ней должно иметь отрицательную среднюю плотность энергии. Это утверждение требует некоторого объяснения. Вспомним, что гравитация (кривизна пространства-времени) есть производная массы (Врезка 2.6) и что масса и энергия эквивалентны (Врезка 5.2, где эквивалентность формулируется знаменитым уравнением Эйнштейна Е = Мс 2). Это означает, что о гравитации тоже можно думать как о производной от энергии. Возьмем теперь плотность энергии вещества внутри червоточины (энергия на кубический сантиметр) с точки зрения светового пучка — т. е. с точки зрения путешественника, который движется через нору со скоростью света, — и усредним эту плотность энергии по траектории светового пучка. Результирующая усредненная плотность энергии должна быть отрицательной, для того чтобы вещество могло расфокусировать световой пучок и удерживать нору открытой — т. е. для того, чтобы вещество червоточины было «экзотическим». [135] На техническом языке это значит, что экзотическое вещество «нарушает условие малой средней энергии».
Врезка 14.1
Экзотическое вещество: как удержать открывшуюся червоточину
Любая сферическая червоточина, через которую может распространяться свет, будет дефокусировать его гравитационными силами. Чтобы доказать это, представим себе (см. рисунок), что пучок света перед тем как войти в червоточину проходит через собирающую линзу. Таким образом, световые лучи будут сходиться в направлении центра червоточины. Затем лучи будут продолжать распространяться радиально (как же еще им распространяться?). Это значит, что когда они появятся из другого отверстия, они будут расходиться радиально из центра червоточины. Пучок дефокусирован. Пространственно-временная кривизна червоточины, которая является причиной дефокусировки, является следствием экзотического вещества, которое пронизывает червоточину, удерживая ее открытой.
Читать дальше