Гигантские черные дыры
Идея о том, что квазары и радиогалактики могут питаться энергией от гигантских черных дыр, была предложена Эдвардом Салпетером и Яковом Борисовичем Зельдовичем в 1964 г. (в первый год Золотого века, глава 7). Эта идея была очевидным приложением открытия Зельдовича — Салпетера того факта, что падающие на черную дыру потоки должны сталкиваться и излучать (см. рис. 8.4).
Более полное и реалистичное описание падения газовых потоков на черную дыру было дано в 1969 г. британским астрофизиком из Кембриджа Дональдом Линден-Беллом. Линден-Белл приводил убедительные доводы, что после того как газовые потоки столкнутся, они соединятся, и центробежная сила вынудит их вращаться, делая много оборотов по спирали вокруг черной дыры, пока они не упадут на нее. Вращаясь, они образуют объект в форме диска, во многом похожий на кольца вокруг планеты Сатурн — аккреционный диск, как его назвал Линден-Белл, поскольку газ собирается, аккрецируется (от латинского accretio — приращение, увеличение) черной дырой. (Справа на рис. 8.7 показан такой диск вокруг небольшой черной дыры внутри объекта Лебедь Х-1 в представлении художника.) В аккреционном диске прилегающие газовые потоки должны тереться друг о друга, и это интенсивное трение будет нагревать диск до высоких температур.
В 1980-х годах астрофизики поняли, что ярко светящийся объект в центре 3C273 размером в 1 световой месяц или даже меньше, возможно, является аккреционным диском Линден-Белла, нагретым таким трением.
Обычно мы полагаем, что трение — слабый источник теплоты. Вспомним несчастного бойскаута, тщетно пытающегося разжечь огонь трением двух палочек друг о друга. Однако бойскаут ограничен своей слабой мускульной силой, тогда как в аккреционном диске трение питается гравитационной энергией. Поскольку мощность гравитации очень велика, во много раз больше, чем у ядерной энергии, трение вполне может нагреть диск и заставить его светиться в 100 раз сильнее самых ярких галактик.
* * *
Каким образом черная дыра может вести себя подобно гироскопу? Джеймс Бардин и Джакобус Петтерсон из Йельского университета нашли ответ в 1975 г. Если черная дыра быстро вращается, она ведет себя в точности как гироскоп. Направление ее вращения всегда остается строго зафиксированным и неизменным, а завихрение пространства вблизи черной дыры, обусловленное вращением (рис. 7.7), остается всегда строго ориентированным в том же направлении. Бардин и Петтерсон показали с помощью математических расчетов, что это завихрение пространства вблизи черной дыры должно захватывать внутреннюю часть аккреционного диска и плотно удерживать его в экваториальной плоскости черной дыры, независимо от того, как он был ориентирован вдали от нее (рис. 9.6). При захвате нового газа из межзвездного пространства удаленные от центра части диска могут изменить свою форму, но ориентация диска вблизи поверхности черной дыры измениться из-за этого не может. Этому препятствует гироскопическое действие черной дыры. Вблизи черной дыры диск всегда остается в ее экваториальной плоскости.
9.6. Вращение черной дыры приводит к завихрению пространства вокруг нее, и это завихрение удерживает внутреннюю часть аккреционного диска в экваториальной плоскости дыры
Без решения Керром уравнений поля Эйнштейна гироскопическое действие черной дыры оставалось бы неизвестным, и наверное, квазары оставались бы непонятными. Имея в руках решение Керра, астрофизики в середине 1970-х годов подошли к ясному и элегантному объяснению. Впервые главную роль в объяснении астрономических наблюдений играла концепция черной дыры как динамического объекта, а не просто как «дырки в космосе».
Насколько сильным может быть завихрение пространства вблизи гигантской черной дыры? Ответ вывел Джеймс Бардин. Он математически показал, что газ, аккрецирующий на черную дыру из диска, должен постоянно заставлять черную дыру вращаться все быстрее и быстрее. К тому времени как черная дыра поглотит достаточное количество падающего на нее по спирали газа, чтобы удвоить свою массу, она станет вращаться почти с максимально возможной скоростью — скоростью, выше которой центробежные силы будут мешать ее дальнейшему ускорению (глава 7). Поэтому гигантские черные дыры должны обычно иметь скорость вращения, близкую к максимальной.
Читать дальше