Валентин Асмус - ЛОГИКА

Здесь есть возможность читать онлайн «Валентин Асмус - ЛОГИКА» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1947, Издательство: ОГИЗ, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

ЛОГИКА: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «ЛОГИКА»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.

ЛОГИКА — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «ЛОГИКА», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Здесь к общему суждению мы пришли от частного. Такой переход наша мысль делает на каждом шагу. И это вполне понятно: общее положение обычно не видно сразу. Тысячелетия люди видели, как пар, охлаждаясь, превращается в воду. Однако прошло немало времени, понадобилась огромная работа наблюдения, опыта и мысли, чтобы от знания этого факта люди дошли до знания того, что всякий газ может быть превращён в жидкое тело. Сначала установили, что некоторые газы могут быть при особых для каждого условиях превращаемы в жидкости. На этой стадии обобщение распространялось только на часть газов, другие ещё не поддавались превращению. Поэтому суждение, выражающее свойство газов сжижаться в жидкость, могло быть только частным . И только впоследствии, когда техника опытов позволила достигать весьма низких температур, было установлено, что любой газ может при достаточном для него охлаждении стать жидкостью. На этой стадии обобщение стало полным, а суждение « все газы сжижаются в жидкости», выражающее его результат, — общим.

Такой путь превращения единичного положения в частное, а частного — в общее проходят многие суждения. В каждый момент развития науки в ней существуют такие частные суждения, которые находятся на переходе к суждениям общим; сегодня такое суждение ещё частное, для полного обобщения нехватает данных, но завтра эти данные могут быть найдены, и суждение из частного станет общим.

Постоянно существующая возможность перехода частного суждения в общее отражается в некоторой двусмысленности частного суждения. Мы уже видели, что суждение типа «некоторые S—Р» может иметь различный смысл. Его можно понять так, что только часть S—Р, а другая часть S — не-Р. И его можно понять так, что по крайней мере некоторые S—Р. В последнем случае не исключена возможность, что даже все S окажутся Р. Возможность эта постоянно имеется для многих положений науки, находящихся на пути к полному обобщению.

§ 22.Но и независимо от возможности перехода частного суждения в общее всяким общим суждением предполагаются суждения частные и единичные. И это справедливо даже относительно суждений математики.

И действительно, даже мысля общие суждения математики, мы не мыслим их в безусловной отдельности от суждений частных и единичных. Общность теоремы означает, что эта теорема, будучи справедлива относительно целого класса математических предметов — фигур, величин и т. д.,— будет справедлива и для некоторой части этого класса и для единичного представителя класса. Так как верно, что все равносторонние треугольники равноугольны, то должно быть верно и то, что некоторые равносторонние треугольники равноугольны, и то, что этот данный равносторонний треугольник равноуголен.

Но и единичное суждение не мыслится отдельно от общего. Хотя суждение «эта птица — соловей» имеет силу только относительно данной и никакой другой птицы, суждением о ней предполагаются общие суждения. Чтобы отождествить данную птицу с соловьём, я должен иметь точное понятие о целом ряде существенных свойств, общих для всех cоловьёв. Суждение единичное — по предмету высказывания — предполагает усвоение целого ряда общих знаний, выражаемых посредством общих суждений.

§ 23.Вопрос о качестве и о количестве суждения имеет большое значение в логических операциях, называемых умозаключениями, или выводами, а также в доказательствах. Учитывая важность характеристики суждения по качеству и количеству для суждений, обосновывающих выводы о принадлежности, логика выработала систему обозначений, при помощи которых качество и количество любого суждения о принадлежности выражаются одной буквой. Суждения общие по количеству и утвердительные по качеству (например, «все жидкости упруги») называются общеутвердительными и обозначаются латинской буквой А. Суждения частные по количеству и утвердительные по качеству (например, «некоторые металлы — сплавы») называются частноутвердительными и обозначаются латинской буквой I. Буквы А и I — первая и вторая гласные латинского глагола «affirmo», означающего «утверждаю». Суждения общие по количеству и отрицательные по качеству (например, «ни один паук не есть насекомое») называются общеотрицательными и обозначаются латинской буквой Е. Наконец, суждения частные по количеству и отрицательные по качеству (например, «некоторые вещества не растворяются в воде») называются частноотрицательными и обозначаются латинской буквой О. Буквы Е и О — первая и вторая гласные латинского глцгола «nego», означающего «отрицаю».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «ЛОГИКА»

Представляем Вашему вниманию похожие книги на «ЛОГИКА» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «ЛОГИКА»

Обсуждение, отзывы о книге «ЛОГИКА» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x