Валентин Асмус - ЛОГИКА

Здесь есть возможность читать онлайн «Валентин Асмус - ЛОГИКА» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1947, Издательство: ОГИЗ, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

ЛОГИКА: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «ЛОГИКА»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга использует формат FB вер. 2.1. Для полноценного воспроизведения содержимого (текст содержит таблицы) надо использовать программы чтения, поддерживающие этот формат. Это могут быть CoolReader3, FB2Edit (в режиме чтения) и др.
Предлагаемая книга представляет систематическое изложение учений логики. Она может быть использована студентами высших учебных заведений, аспирантами научно-исследовательских институтов и лицами, приступающими к самостоятельному изучению логики. Преподаватели логики в средней школе найдут в ней подробное освещение вопросов, входящих в программу их предмета, но лишь кратко излагаемых в учебниках логики для старшего класса.

ЛОГИКА — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «ЛОГИКА», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

§ 34.Кроме определений к числу высших оснований науки принадлежат также и аксиомы . Так называются основания, которые не доказываются данной наукой и принимаются ею в качестве исходных оснований. Примером аксиомы в арифметике может быть аксиома, согласно которой сумма данных количеств не изменяется от перестановки слагаемых количеств и т. д.

Сходство между определением и аксиомой состоит в том, что и определения и аксиомы употребляются в качестве исходных оснований доказательства, т. е. таких оснований, которые не выводятся из других оснований.

Различие между определением и аксиомой может быть легко выяснено. Определение есть установление содержания основного для данной науки понятия. Определение, например, вертикального угла предполагает согласие между всеми геометрами о том, какое содержание разумеют они, когда речь идёт о вертикальных углах. Определение понятия «товар» предполагает согласие между экономистами, по которому под «товаром» все они разумеют вещь, способную удовлетворять какую-либо потребность и способную обмениваться на другие вещи. Установление системы принятых в данной науке определений устраняет ту сбивчивость в понятиях, которая была бы неизбежной, если бы относительно терминов, означающих эти понятия, не существовало согласия.

Чем точнее определение, тем меньше опасность логических ошибок, происходящих от отсутствия определённости в мышлении. И, напротив, при отсутствии точных определений понятий всегда возможно недоразумение, состоящее в том, что собеседники или спорщики только воображают, будто рассуждают об одном и том же предмете, в действительности же каждый из них в ходе рассуждения под одним и тем же словом разумеет не совсем одно и то же (а иногда и совершенно различное) содержание.

§ 35.В отличие от определения, которое только устанавливает содержание понятия, аксиома есть утверждение, которое рассматривается в данной науке как заведомо истинное, хотя оно нигде не доказывается.

Определение, само по себе взятое, ещё не говорит о необходимой истинности определяемого. Правда, в огромном большинстве случаев определения выражают то самое содержание предмета, которое существует в действительности. Но возможно точное определение и такого понятия, которое означает предмет, не существующий и не могущий существовать в действительности. Так, задача квадратуры круга, т. е. отыскания квадрата, площадь которого была бы в точности равновелика площади круга, есть задача неразрешимая, но самое понятие квадратуры круга может быть определено вполне точно.

Напротив, аксиома есть не условие, принятое относительно значения и содержания известного понятия, но некоторое утверждение, которое рассматривается в данной науке в качестве положения заведомо истинного.

§ 36.Иногда думают, будто аксиомы не доказываются потому, что истины, выражаемые в этих аксиомах, настолько очевидны, что не требуют никакого доказательства. Мнение это не совсем правильное. И действительно, очевидность истины, сама по себе взятая, ещё не освобождает от необходимости доказать эту истину, — если только такое доказательство может быть найдено.В геометрии, например, существует немало теорем, которые не-специалисту представляются совершенно очевидными в своей истинности и которые тем не менее доказываются со всей строгостью принятых в этой науке доказательств. Такова, например, теорема, согласно которой диаметр всякого круга делит этот круг на равные части и т. д.

§ 37.Но аксиомы даже не являются положениями безусловно очевидными.

По крайней мере некоторые из аксиом геометрии уже в древности казались далеко не безусловно очевидными. Таков, например, пятый постулат, или одиннадцатая аксиома Евклида, согласно которой через точку С (см. рис. 69), взятую вне данной прямой АВ , на плоскости, где находятся и С и АВ , можно провести только одну единственную прямую, например ОС ,которая при продолжении не пересекалась бы с прямой АВ , так что всякая другая прямая, проведённая через точку С и лежащая в той же плоскости, при достаточном продолжении пересечётся с прямой АВ .

Рис 69 Замеченная уже самим Евклидом независимость ряда предложений - фото 68

Рис. 69

Замеченная уже самим Евклидом независимость ряда предложений, доказываемых геометрией, от одиннадцатой аксиомы, появление этой аксиомы в «Началах» Евклида лишь после доказательства 28 теорем первой книги «Начал», внушали геометрам мысль доказать эту аксиому в качестве теоремы. Однако попытка доказательства её, предпринятая вслед за другими геометрами Лобачевским и так же, как и у них, неудавшаяся, привела Лобачевского к открытию, что допущение, противоречащее аксиоме о параллельных, в сочетании со всеми остальными аксиомами Евклида, будучи принято в качестве одного из исходных оснований геометрии, даёт возможность развить целую систему геометрии, которая, при всём противоречии этого основания непосредственному наглядному представлению о пространственных отношениях, нигде не запутывается во внутренних противоречиях и строго доказывает все свои предположения.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «ЛОГИКА»

Представляем Вашему вниманию похожие книги на «ЛОГИКА» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «ЛОГИКА»

Обсуждение, отзывы о книге «ЛОГИКА» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x