Томас Кун - После «Структуры научных революций»

Здесь есть возможность читать онлайн «Томас Кун - После «Структуры научных революций»» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Литагент АСТ, Жанр: Философия, sci_social_studies, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

После «Структуры научных революций»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «После «Структуры научных революций»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этот сборник, впервые опубликованный уже после смерти великого ученого, вошли статьи, в которых Томас Кун вновь обращается к темам, так или иначе затронутым в его opus magnum «Структура научных революций». Что же такое, согласно его теории, наука – эмпирическое исследование или своеобразное «социальное предприятие»? И существует ли аналогия между развитием науки и эволюцией в природе?

После «Структуры научных революций» — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «После «Структуры научных революций»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Начнем с Больцмана, который представлял себе газ как совокупность множества крохотных молекул, быстро движущихся в замкнутом сосуде и сталкивающихся друг с другом и со стенками сосуда. Из работ других физиков Больцман знал, какова средняя скорость молекул (точнее, каков в среднем квадрат их скорости). Но многие молекулы двигались, конечно, с меньшей, чем средняя, скоростью, а какие-то из них двигались быстрее. Больцман хотел установить, какая часть молекул двигалась с ½ от средней скорости, какая часть – с 4/ 3средней скорости и так далее. Ни сам вопрос, ни ответ, который он нашел, не были открытием. Однако Больцман пришел к ответу новым путем, исходя из теории вероятностей, и этот путь имел фундаментальное значение для Планка.

Для нас здесь важен лишь один аспект метода Больцмана. Он рассматривал общую кинетическую энергию молекул Е. Чтобы использовать теорию вероятностей, он мысленно разделял эту энергию на маленькие кусочки, или элементы, величины г, как показано на рис. 5. Затем воображал случайное распределение молекул среди этих кусочков, вытаскивая пронумерованные бумажки из урны, чтобы установить место каждой молекулы, а потом исключая все распределения с общей энергией, отличной от Е . Например, если первая молекула попадала в последний отрезок (энергия Е ), то единственно приемлемым распределением оказывалось бы такое, при котором все другие молекулы попадали в первый отрезок (энергия о).

Ясно, что такое распределение молекул в высшей степени невероятно. Более правдоподобной выглядит ситуация, когда большая часть молекул обладает какой-то энергией, и с помощью теории вероятностей можно обнаружить наиболее вероятное распределение энергии среди молекул. Больцман показал, как это сделать, и его результат совпадал с тем, что было получено ранее им самим и другими физиками.

Рис 5 Этот способ решения проблемы был изобретен в 1877 г а через двадцать - фото 5

Рис. 5

Этот способ решения проблемы был изобретен в 1877 г., а через двадцать три года, в конце 1900 г., Макс Планк применил его для решения иной проблемы – проблемы излучения черного тела. С физической точки зрения проблема состояла в том, чтобы объяснить, каким образом изменяется цвет нагретого тела в зависимости от его температуры.

Представьте, например, излучение железной болванки, которая по мере повышения температуры сначала начинает исходить жаром (инфракрасное излучение), потом краснеет и в конце концов становится ослепительно белой. Для анализа ситуации Планк вообразил контейнер, наполненный разного рода излучениями, то есть светом, теплом, радиоволнами и т. п. Вдобавок предположил, что в контейнере имеется некоторое количество «резонаторов» (представляя их в виде тонких электрических камертонов, каждый из которых настроен на излучение одной определенной частоты). Эти резонаторы поглощают энергию из общего потока излучения, и Планк ставит вопрос: как энергия, отбираемая каждым резонатором, зависит от ее частоты? Каково частотное распределение энергии среди резонаторов?

В таком понимании проблема Планка становится очень близкой к проблеме Больцмана, Планк применяет для ее решения вероятностную технику Больцмана. Грубо говоря, использует теорию вероятностей для нахождения пропорций, в которых резонаторы попадают в каждую отдельную ячейку, – точно так, как Больцман находил распределение молекул.

Его ответ соответствовал экспериментальным результатам лучше, чем любой другой, однако между его проблемой и проблемой Больцмана обнаружилось неожиданное различие. Для Больцмана ячейка величины s могла иметь много разных значений, что не влияло на результат. Несмотря на то что допустимые значения были взаимосвязаны и не являлись слишком большими или слишком маленькими, могло существовать бесконечно много удовлетворительных значений.

Проблема Планка показала иное: величину ячейки s детерминировали другие стороны физики. Она могла иметь лишь единственное значение, задаваемое знаменитой формулой ε = hv, в которой v является частотным резонатором, a h представляет собой универсальную константу, впоследствии названную именем Планка.

Планк, конечно, недоумевал относительно причины ограничения величины ячейки, но твердо следовал избранному пути. За исключением этой небольшой трудности, он все-таки решил свою проблему, а его подход остался близок подходу Больцмана. В частности, что наиболее важно, в обоих решениях разделение общей энергии Е по ячейкам величины 8 было мысленным, осуществляемым статистически. Молекулы и резонаторы могли распределяться по всей линии и подчинялись стандартным законам классической физики.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «После «Структуры научных революций»»

Представляем Вашему вниманию похожие книги на «После «Структуры научных революций»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Владимир Кирсанов - Научная революция XVII века
Владимир Кирсанов
Отзывы о книге «После «Структуры научных революций»»

Обсуждение, отзывы о книге «После «Структуры научных революций»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x