Авенир Уемов - Логические ошибки. Как они мешают правильно мыслить

Здесь есть возможность читать онлайн «Авенир Уемов - Логические ошибки. Как они мешают правильно мыслить» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1958, Издательство: Госполитиздат, Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Логические ошибки. Как они мешают правильно мыслить: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логические ошибки. Как они мешают правильно мыслить»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Логические ошибки. Как они мешают правильно мыслить — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логические ошибки. Как они мешают правильно мыслить», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Об ошибках такого рода говорят: «Кто слишком мало доказывает, тот ничего не доказывает». Именно такая сшибка имела место в приведенном выше доказательстве того, что средняя школа не должна давать даже простейших навыков в области высшей математики. Доказывая это, ссылаются на то, что для изучения высшей математики в вузе важнее другие разделы. Но в данном случае решается вопрос об изучении математики не только теми учащимися, которые будут поступать в технические вузы, но и теми, которые пойдут в другие вузы, и теми, которые вообще не будут поступать в вуз. Может быть, именно для тех, кто изучает математику только в средней школе, особенно важно ознакомление с некоторыми разделами высшей математики. Во всяком случае, это необходимо каждому учащемуся уже для того, чтобы иметь более или менее ясное представление о тех предметах, среди которых он будет выбирать свою будущую специальность. Обосновывать ненужность изучения элементов высшей математики в средней школе тем, что они не обязательны для будущих студентов технических вузов, — это значит вместо данного тезиса доказывать лишь его часть.

Подмена тезиса особенно часто наблюдается при опровержениях , когда обосновывается не истинность, а ложность какого-либо утверждения. В этих случаях очень часто опровергается совсем не то, что нужно опровергнуть.

Открытие сложного строения атома показало, что материя не обладает теми свойствами непроницаемости, твердости, неделимости и т. д., которые ей приписывались прежними философами-материалистами. В связи с этим идеалисты объявили опровергнутым материализм вообще. Но в этом отношении опровергнут был не материализм вообще, а только старый, так называемый метафизический материализм. Новый же, диалектический материализм, созданный К. Марксом и Ф. Энгельсом, этими открытиями не только не был опровергнут, но, как показал В. И. Ленин в работе «Материализм и эмпириокритицизм», нашел в них свое блестящее подтверждение. Опровергая материализм вообще на основе опровержения метафизического материализма, идеалисты подменяли один тезис другим.

Подмена тезиса при опровержении довольно часто наблюдается и в обыденной жизни. Нередко можно услышать разговор такого типа:

А. Книгу, которая нам нужна, могут до завтра продать, так что пойдем в книжный магазин сегодня.

Б. Нет, ее продать не могут.

На следующий день книга оказалась непроданной, По этому поводу Б. замечает: «Вот видишь, а ты говорил, что ее продадут».

Тот факт, что книгу не продали, опровергает утверждение «книгу обязательно продадут». Но А. утверждал только, что книгу могут продать, и это утверждение фактом наличия книги не опровергается. Утверждая обратное, Б. подменяет один тезис другим.

Теперь посмотрим, каким требованиям должна удовлетворять вторая часть доказательства — аргументы, для того чтобы доказательство было правильным.

Прежде всего положения, которые приводятся в качестве аргументов, должны быть безусловно истинными . Это одно из самых важных правил доказательства. Если умозаключение в принципе может быть правильным даже при наличии фактических ошибок в посылках, то обязательным условием логической правильности доказательства является фактическая истинность посылок.

Ошибка, связанная с нарушением этого правила, была допущена в приведенном выше доказательстве того, что не существует антиподов. Авторы этого рассуждения исходили из ложной предпосылки о существовании абсолютного, одинакового для всего мира «верха» и «низа», что обусловило логическую несостоятельность этого доказательства. Поэтому совершенно неправильно мнение, согласно которому это рассуждение «логично, но… ошибочно».

Здесь доказательство смешивается с умозаключением. Можно строго логично сделать вывод из ложных суждений, но нельзя доказывать ложным суждением. Ошибочность посылки означает нелогичность доказательства.

Логические ошибки Как они мешают правильно мыслить - изображение 9
Рис. 9
Логические ошибки Как они мешают правильно мыслить - изображение 10
Рис. 10
Рис 11 Ошибка связанная с неистинностью аргументов носит название основного - фото 11
Рис. 11

Ошибка, связанная с неистинностью аргументов, носит название «основного заблуждения», то есть заблуждения, лежащего в основании. Ее иногда бывает трудно обнаружить в связи с тем, что трудно выделить самые аргументы. Аргумент маскируется, упоминается мимоходом, благодаря чему маскируется и логическая ошибка. Так было замаскировано одно из неправильных исходных положений в доказательстве того, что 441 см 2= 442 см 2. В этом доказательстве исходят из того, что если сложить вместе прямоугольную трапецию (рис. 9) и прямоугольный треугольник (рис. 10), то получится прямоугольный треугольник, то есть сторона « a » треугольника будет продолжением стороны « b » трапеции (рис. 11). Но этот аргумент вовсе не очевиден. Мало того, при указанных в задаче размерах он является ложным. Если бы треугольник и трапеция соответствовали данным размерам, то от их сложения получился бы не треугольник, а четырехугольник (рис. 12). При тех размерах, которые даны в задаче, разница оказывается настолько незначительной (в конечном итоге — всего лишь 1 см 2), что заметить ошибку на чертеже почти невозможно. Но с логической точки зрения тот факт, что при рассуждении исходили из положения, истинность которого не проверена, делает все доказательство неправильным.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логические ошибки. Как они мешают правильно мыслить»

Представляем Вашему вниманию похожие книги на «Логические ошибки. Как они мешают правильно мыслить» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Логические ошибки. Как они мешают правильно мыслить»

Обсуждение, отзывы о книге «Логические ошибки. Как они мешают правильно мыслить» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x