Рис. 4. Внешний вид ТАИРа.
После такой характеристики сложности и возможностей мозга задача его воспроизведения в модели кажется безнадежной. Трудно представить себе искусственную сеть из десятка миллиардов элементарных усилителей, каждый из которых может иметь сотни входов, обладает способностью к тренировке — то есть изменению характеристик. Трудно, но не безнадежно. В отличие от длительной естественной эволюции прогресс науки и техники стремителен и все более ускоряется. Поэтому в перспективе возможна и аналоговая сеть, сравнимая по мощности с мозгом. Важно правильно поставить задачу — в данном случае сказать, какими должны быть элементы и как их соединять друг с другом. Пожалуй, еще важнее представить алгоритм интеллекта в достаточно обобщенном виде, позволяющем реализовать его различными средствами.
Велики технологические трудности на пути до аналогового интеллекта. Поэтому так заманчивы универсальные цифровые машины, которые уже теперь достигли большой мощности. Совершенствуется их внешняя память и растет объем оперативной памяти. Быстродействие исчисляется миллионами операций в секунду. Разделение времени и создание параллельных программ позволяют повысить эффективность компьютеров. Создается впечатление, что возможности ЦВМ еще не достаточно использованы для реализации алгоритма интеллекта. То обстоятельство, что до сих пор наши попытки создания СИ не увенчались успехом, еще не означает, что исследования закончены. Нужно сохранить обобщенный алгоритм, но отказаться от сети с тем, чтобы уменьшить объем расчетов. Однако при этом следует лишь в минимальной мере поступиться принципами. Мы решили предпринять такую попытку — создать алгоритмическую модель интеллекта. Соображения к ее проекту будут представлены в заключительной части книги. А пока перейдем к изложению идей, положенных в основу этой модели.
Современный этап развития науки ознаменован достижением принципиальной важности: вычислительные машины дали возможность овладеть сложностью. Все значение этого достижения как раз и состоит в том, что появилась надежда на создание количественных моделей, приближающихся по сложности к биологическим системам. Возможно, что при разработке таких моделей недостаточно внимания уделяется значению пространственных структур объектов, хотя наблюдения природы указывают на их исключительную роль (вспомним двойную спираль молекулы ДНК).
Весь физический мир можно свести к пространственным структурам, состоящим из атомов и молекул, а также к действующим между ними силам, связывающим материальные частицы в комплексы, которые условно можно назвать «телами». Общеизвестно, что все объекты в мире взаимосвязаны, однако степень прочности этих связей весьма различна: от жестких связей внутри твердых тел до гравитационных и электромагнитных сил, лишь ограничивающих пространственную свободу частиц. Пространство, энергия и время — вот самые общие координаты частиц и тел. Еще недавно казалось, что энергетические и материальные взаимоотношения между частицами и телами достаточно объясняют мир. Но вот появилось понятие информации и понятие сигнала как носителя информации, и это поколебало представления об исключительно энергетическом и материальном характере балансов отношений между объектами. Сигнал, несущий ничтожное количество энергии, может вызвать огромные вещественные и энергетические пертурбации в сложной системе, на которую он направлен (пример — атомная война).
Рис. 5. Схемы простых систем — закрытой и открытой. Между элементами происходит обмен энергией Эн и веществом В.
Сложность структурных и энергетических отношений стала самостоятельным и значимым понятием, без учета которого уже невозможно объяснить мир. Понятие системы тоже более или менее определилось: это пространственная структура из неких элементов, объединенных внутренними «силами» настолько прочно, что она выступает как единое целое, противопоставленное всем другим объектам. Системы зависят друг от друга в обмене энергией и веществом, но в меньшей степени, чем элементы внутри них (рис. 5). Хотелось бы дать количественное понятие системы, но очень нелегко установить, когда простое сочетание взаимодействующих элементов уже становится системой. Степень «зрелости» системы условно можно определить по степени зависимости ее элементов друг от друга: сколько времени они могут «самостоятельно прожить», не распадаясь на более простые частицы, если их отделить от системы. В связи с этим понятие элемента системы тоже не просто — в конце концов все объекты разложимы до элементарных частиц. Мне кажется, что элементом системы нужно считать некое более простое образование, уже обладающее чертами данной системы. Если взять живые биологические объекты, то можно перечислить иерархические ступени их сложности: элементарные частицы, атомы, молекулы, макромолекулы (ДНК, белки), клетки, органы, организмы, сообщества, биоценозы... Каждый уровень сам по себе достаточно сложен по структуре, чтобы претендовать на звание «сложности», но все-таки, какие из них допустимо считать сложными, какие отнести к простым, какие признать лишь элементами сложных. Без условности здесь не обойтись.
Читать дальше