Алексей Лосев - Проблема символа и реалистическое искусство

Здесь есть возможность читать онлайн «Алексей Лосев - Проблема символа и реалистическое искусство» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Философия, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Проблема символа и реалистическое искусство: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Проблема символа и реалистическое искусство»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Проблема символа и реалистическое искусство — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Проблема символа и реалистическое искусство», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Другой весьма важной математической моделью для построения понятия "символ" является извлечение корня, не выразимое при помощи конечного числа арифметических знаков. Так, например, извлечение квадратного корня из числа 2 или из числа 3 никогда не может прийти к окончательному результату, поскольку квадратный корень из этих чисел, как говорят, "не извлекается". Мы получаем здесь в качестве корня одну целую единицу и еще бесконечное количество десятичных знаков. Сколько бы мы ни вычисляли этих десятичных знаков, мы никогда не получим точного квадратного корня из,2 или из 3. Чем больше мы вычислим (9) этих десятичных знаков, тем наш корень получит более точное значение Но в окончательном смысле только бесконечное количество десятичных знаков могло бы нам дать точное представление об этом корне. Тем не менее здесь решающую роль играет одно обстоятельство: эти десятичные знаки возникают не как попало, не случайно, не хаотично, но в силу определенного закона и в виде определенной системы. Этот закон и эту систему наши школьники прекрасно знают, когда начинают вычислять квадратный корень из 2 или из 3. Ведь имеется определенное правило для получения любого количества десятичных знаков в данном случае. Значит, и возникновение последних подчинено определенному закону, определенной системе. Бесконечного количества десятичных знаков мы получить не можем. Но все-таки достаточно уже школьной математики, чтобы понять, что же такое этот квадратный корень из 2 или 3. И всякий школьник, прошедший основы математики в средней школе, прекрасно оперирует с этими иррациональными величинами, не хуже, чем с рациональными, поскольку для иррациональных величин существуют свои особые правила. Вот символ и является такого рода заданием, которое невозможно вычислить точно и осуществить при помощи конечного количества величин. И тем не менее он есть нечто совершенно точное, абсолютно закономерное и в идеальнейшем смысле слова системное.

К несчастью, пошлые предрассудки обыденного мышления заставляют пугаться таких терминов, как "иррациональное число". Тут уж часто оказывается бессильной даже точнейшая математика. Однако сейчас мы покажем, что иррациональность не только есть нечто закономерно мыслимое и системное наряду с рациональными величинами, но что она есть также и нечто вполне видимое, физически видимое, физически осязаемое, хотя, правда, математики об этом не очень любят говорить.

Возьмите геометрическую фигуру - квадрат - и представьте себе, что каждая сторона ,этого квадрата равняется единице. Тогда опять-таки уже школьник бойко вычислит вам диагональ этого квадрата. Согласно известной теореме, диагональ квадрата со сторонами, равными единице, есть не что иное, как квадратный корень из 2. После этого я вас спрошу: видите ли вы своими глазами эту диагональ или не видите? Если у вас нормальные глаза, то, конечно, вы видите эту диагональ. А ведь она есть нечто иррациональное. Точно так же если вы имеете круг с определенным радиусом, то уже школьный учебник трактует о том, что такое окружность круга и что такое площадь круга. Окружность круга есть 2?R, где R есть величина радиуса, а я есть особого рода число, тоже не выразимое в конечных арифметических знаках, но по своей структуре гораздо более сложное, (10) чем даже иррациональная величина. Также при помощи конечно измеряемого радиуса можно получить и площадь круга: ?R2. И я опять спрошу: видите ли вы своими физическими глазами эту окружность круга и эту площадь круга, образованную при помощи конечного радиуса? Конечно, видите. Но в таком случае вы мне не говорите, что иррациональные или трансцендентные величины невидимы. Они великолепно видимы, как бы тут ни возмущался обывательский рассудок.

Точно так же и символ вполне видим и вполне осязаем, хотя в него входят иррациональные и трансцендентные величины. И поэтому иррациональный и трансцендентный (в математическом смысле) символ не только не мешает реализму отражения объективных вещей в человеческом сознании, не только не мешает образному отображению этих величин в действительности с целью ее закономерного ч системного изучения и сознательно-творческого ее переделывания, но это отражение и обратное отображение только и возможно при помощи иррациональных и трансцендентных моментов. Тот довод, что это происходит только в математике, а в действительности ничего подобного нет, явно продиктован последовательным и выраженным субъективизмом. Почему же Леверье вычислил существование Нептуна и появление его в определенный момент времени в определенном месте небесного свода, отнюдь не наблюдая самого Нептуна, а только чисто математически? Значит, и математика вполне реалистична, хотя отражает она не только поверхностные, но и глубинные структуры действительности. В этом смысле нет никакой возможности противопоставлять математическое извлечение "неизвлекаемого корня" предлагаемой здесь нами теории символа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Проблема символа и реалистическое искусство»

Представляем Вашему вниманию похожие книги на «Проблема символа и реалистическое искусство» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Проблема символа и реалистическое искусство»

Обсуждение, отзывы о книге «Проблема символа и реалистическое искусство» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x