Все геологические структуры являются диссипативными структурами, которые возникают и поддерживаются за счет диссипации внутренней энергии Земли и одновременно изменяются за счет поглощения и рассеяния энергии Солнца.
Внутренняя энергия Земли образовалась благодаря многим процессам, выделим два из них — аккрецию и радиоактивность.
Предполагается что большая часть массы Земли связалась воедино за сравнительно короткое время (порядка миллионов лет), в основном, как уже отмечалось выше, за счет образования и последующего объединения (слипания) планетезималей в крупные образования. После того, как масса Земли достигла почти современной массы, но еще не приобрела атмосферы, беспрепятственное падение метеорных и астероидных тел на ее поверхность (аккреция) приводило к выделению значительной гравитационной энергии и нагреву. При этом доля тепла, идущая на нагрев недр молодой планеты, была тем больше, чем крупнее были падающие тела. Сильные удары приводили к частичному плавлению вещества в ограниченной области, но, в целом, температура растущей Земли не достигала температуры плавления, а оказалась не выше 600–800 градусов Цельсия. Примерно через 400–500 млн лет образовалась атмосфера и температура Земли снизилась почти до современной.
Среди признаваемых современных гипотез об образовании Солнца есть и та, что Солнце — звезда второго поколения, то есть оно образовалось не из первичного газа, а в значительной степени из вещества, выброшенного взрывами сверхновых звезд первого поколения, обогащенного тяжелыми элементами, в том числе и радиоактивными. Причем, кроме известных нам долгоживущих радиоактивных элементов — урана, тория и калия (который уже практически весь распался), в нем присутствовали и короткоживущие радиоактивные элементы (с периодом полураспада порядка десятков миллионов лет). Оценки показывают, что радиоактивного тепла могло быть достаточно для сильного разогрева и расплавления значительной части внутреннего объема планеты.
Разогрев и расплавление способствовали ускорению дифференциации недр планеты. Гравитационная дифференциация привела к расслоению вещества, в соответствии с плотностью тех или иных химических соединений. Тяжелые, нелетучие компоненты тонули, а легкие, летучие всплывали (возможно, что так, в частности, возникло железное ядро в центре и атмосфера с гидросферой на поверхности). Дифференциация также приводила и к дополнительному выделению гравитационной энергии.
Сейчас выделение радиоактивного тепла продолжается только за счет трех долгоживущих радиоактивных элементов, и оно примерно уравновешивает потери в окружающее пространство. Возможно, оно несколько меньше этих потерь (и Земля понемногу остывает), хотя точно этого утверждать нельзя. Во всяком случае, несмотря на довольно эффективное расслоение, Земля еще далека от равновесия и продолжает жить и совершенствовать свою геосферную структуру.
Сведения о внутренней структуре Земли нам дают сейсмологические, гравиметрические, электрические и магнитные измерения в сочетании с лабораторным исследованием вещества при высоких температурах и давлениях.
В самом грубом приближении строение Земли можно представить в виде концентрических слоев — геосфер. Сверху до глубины в несколько десятков километров простирается земная кора. Толщина ее неравномерна: максимальна под горами — до 70 км, и минимальна под океанами — 5-10 км. Подошва коры определяется как граница раздела, на которой скорость сейсмических волн скачком увеличивается на 1,5–2 км/с. Это увеличение связано с изменением плотности, которое, в свою очередь, скорее всего, связано с изменением химического состава вещества.
Кора, в свою очередь, также подразделяется на несколько сфер. Самый верхний — осадочный, состоит из плохо консолидированных осадков — продуктов разрушения коренных пород, затем следует «гранитный» или «гранито-метаморфический» слой (скорости сейсмических волн соответствуют таковым в гранитах) и нижний «базальтовый». Толщины этих сфер (слоев) варьируются очень сильно. По всей поверхности планеты присутствует лишь самый нижний — «базальтовый» слой; «гранитный» слой практически отсутствует в океанах, то есть на большей части поверхности Земли; осадочный слой может превышать по толщине 10 километров в областях длительного прогибания земной коры и вообще отсутствовать в областях поднятий.
Под корой расположена мантия, для которой предполагается так называемый ультраосновной состав (меньше, чем в базальтах, кремния и алюминия и больше железа и магния). Кора вместе с самой верхней частью мантии образует литосферу — состоящую из жесткого непластичного материала сферу, толщиной около 100 км, покрывающую Землю. Ниже находится астеносфера (ослабленная сфера) — слой с пониженной по сравнению с литосферой вязкостью и скоростью сейсмических волн. Астеносфера выполняет демпфирующую роль для поднимающейся из недр верхней мантии, не позволяя ей разрывать поверхность земной коры. Глубже 250 км скорость волн и вязкость снова нарастают.
Читать дальше