В области искусственного интеллекта существуют различные подходы, направленные на овладение принципами естественного интеллекта. Сюда относится направление исследований по созданию перцептронных моделей мозга как сетей из искусственных нейронов, в основе которых лежат нейронные модели Маккаллока-Питтса. Другое направление исследований - попытка промоделировать саму эволюцию с помощью кибернетической машины (в ускоренном масштабе времени). Эта попытка опирается па эксперименты, в которых с использованием идей мутации и избирательного выживания моделируется процесс построения многих поколений машин с конечным числом состояний. Такая линия исследований, направленных на изучение естественного интеллекта, проводится в теории решения интеллектуальных задач, где рассматриваются методы эвристического поиска. Решение задач посредством эвристически направленного метода проб и ошибок в пространстве возможных решений - доминирующая тема в исследованиях по искусственному интеллекту [72].
Система, которая действует и обучается разумно, предстает неадекватной, пока мы, человеческие существа, не можем пос-стичь, как она обучается, не можем следить за развитием ее понятийной структуры. Мы понимаем системы, которые строим, либо потому, что они являются автоматами, выполняющими алгоритмы, либо потому, что (когда системы похожи на нас) они механически вынуждены действовать подобно человеческим существам. "Весьма различные конструкции такого типа систем наиболее естественно взять за образцы искусственного разума... Однако... они ни в коей мере не выражают всех имеющихся здесь возможностей и не могут рассматриваться как нечто наиболее желательное" [73]. По мнению Г. Паска, в конструкции искусственной системы должно быть учтено, что хорошее обучение или тренировка дают обучаемому возможность действовать подобно самоорганизующейся системе.
Некоторые авторы подчеркивают, однако, что неточно называть автоматом машину, работающую без участия человека. Так, И. Б. Новик приводит по этому вопросу следующие аргументы [74].
116
Во-первых, человек участвует в автоматизированном процессе опосредованно: автоматы - это его овеществленный прошлый труд (даже если один автомат создан другим автоматом и так далее, то и в этом случае исходный автомат создается человеком; человек является, так сказать, "перводвигателем" мира автоматов). Во-вторых, человек участвует в автоматизированном процессе и в качестве решающего управляющего начала: ведь именно человек охватывает весь процесс управления в целом, начиная от его исходного управляющего "импульса". В этом смысле мы можем сказать, что в конечном счете человеку принадлежит "пусковой механизм" автоматов. С этими доводами нельзя не согласиться.
Понятия "автоматический" или "автомат" характеризуют устройства, которые выполняют серию предписанных действий в пределах вмешательства человека. Обычно вмешательство требуется в начале работы, чтобы пустить автомат в ход, и часто в конце, чтобы остановить его работу. Между этими двумя случаями автомат "двигает себя сам". Очевидно, что пуск и остановка кибернетической машины может определяться автономно - внутренней информационной структурой. Старые машины имитировали поведение живых организмов своей способностью к автономному движению. Существенно, что кибернетические устройства моделируют живые существа при помощи своей способности к автономным решениям.
Способность к автономным решениям не означает разрыва со средой. Автономность поведения системы достигается лишь в определенной среде, предполагает связь между системой и средой. Система, способная вести себя автономно и разумно, очевидно, должна состоять из элементов, обладающих определенной структурой и функциональной автономией. В нервной системе человека, например, такая автономия очень сильна. В более общем плане важно заметить, что если части автономны и могут реорганизовываться, если имеются несколько органов, каждый из которых в случае необходимости способен взять на себя управление, то между частями могут развиваться внутренние противоречивые взаимоотношения. Это вновь приводит к проблеме структурно-функциональной сложности организаций с разумным поведением. Естественно принять тезис Дж. Неймана: "Сложность здесь означает не то, как сложен объект, а то, как сложны его целенаправленные действия. В этом смысле объект обладает очень высокой сложностью, если он способен решать весьма трудные и сложные задачи" [75].
Читать дальше