Существенно, однако, то, что нет оснований считать, что любой КоА будет имплементирован любой системой. Если взять любой сложный КоА, то окажется, что существует лишь очень немного физических систем, наделенных каузальной организацией, необходимой для его имплементации. Если мы возьмем КоА, векторы состояний которого имеют тысячу элементов, с десятью опциями для каждого элемента, то аргументы, подобные тем, что выдвигались в главе 7, покажут, что шанс случайного набора физических состояний, имеющих нужные каузальные отношения, чуть меньше 1 из (10 1000) 10^1000(на деле гораздо меньше из-за требования прочности отношений перехода от состояния к состоянию [180]).
Так как же быть с утверждением Серла о том, что вычислительные описания зависимы от наблюдателя? Верно то, что здесь имеется определенная степень такой зависимости: любая физическая система будет имплементировать множество вычислений, и то, на каком из них сосредоточится наблюдатель, зависит от целей этого наблюдателя. Но это не несет в себе угрозу для ИИ или для вычислительной когнитивной науки. По-прежнему верно, что по отношению к любому вычислению можно говорить о фактичности того, что та или иная система имплементирует или не имплементирует его, и в качестве его имплементаций будет выступать лишь ограниченный класс систем. И этого достаточно для того чтобы вычислительные концепции имели метафизическое и объяснительное значение.
Утверждение о том, что физическая система имплементирует комплексное вычисление Р, равносильно совершенно нетривиальному утверждению о каузальной структуре этой системы, которое может быть весьма полезным для когнитивных объяснений, а, быть может, и для понимания основы сознания. Лишь системы с очень специфичной разновидностью каузальной организации могут рассчитывать на соответствие сильным ограничительным условиям имплементации. Так что здесь нет опасности выхолащивания, и можно надеяться, что понятие вычисления окажется прочной основой для анализа когнитивных систем.
Имплементация КоА поразительно напоминает реализацию функциональной организации. Вспомним, что функциональная организация определяется специфицированием множества абстрактных компонентов, множества состояний каждого компонента и системы отношений зависимости, указующих на то, как состояния каждого компонента зависят от предыдущих состояний и от данных на входе, а также на то, как данные на выходе зависят от предшествующих состояний. Понятие КоА, по сути дела, является непосредственной формализацией указанного понятия.
Действительно, при наличии любой функциональной организации того типа, который был описан в главе 7, из нее можно напрямую извлечь КоА. Нужно лишь допустить, что векторы состояния КоА располагают элементами для каждого компонента этой организации и что формальные переходы состояний КоА соответствуют отношениям каузальной зависимости между компонентами. Реализация функциональной организации практически не отличается от имплементации соответствующего КоА. Небольшие различия, связанные, в частностью, с различным обращением с данными на входе и выходе, есть, но они несущественны.
Предложенная мной концепция имплементации, таким образом, проясняет связь между каузальной и вычислительной организацией. Так мы можем увидеть, что при применении вычислительных описаний к физическим системам они, по сути, предоставляют нам формальное описание каузальной организации системы. Вычислительный язык оптимально подходит для спецификации подобной абстрактной каузальной организации. Можно даже попробовать показать, что именно поэтому вычислительные понятия получили столь широкое распространение в когнитивной науке. В объяснении поведения сложной когнитивной системы наибольшее значение имеет абстрактная каузальная организация системы, и вычислительные формализмы оказываются идеальным каркасом, с помощью которого может быть описана и проанализирована подобная организация [181].
Указанная связь упрощает защиту сильного искусственного интеллекта. Я уже приводил доводы в пользу принципа организационной инвариантности, согласно которому относительно любой системы, наделенной сознательными переживаниями, верно, что система, обладающая такой же высокодетализированной функциональной организацией, будет обладать качественно идентичными сознательными переживаниями. Мы, однако, знаем, что любая функциональная организация может быть абстрагирована в КоА, всегда имплементируемый при реализации этой организации. Из этого следует, что для данной сознательной системы М ее высокодетализированная функциональная организация может быть абстрагирована в КоА М, такой, что любая система, имплементирующая М, будет реализовывать такую же функциональную организацию и поэтому будет обладать сознательными переживаниями, качественно неотличимыми от переживаний исходной системы. А это и есть сильный искусственный интеллект.
Читать дальше