Тим О'Райли - WTF? Гид по бизнес-моделям будущего [litres]

Здесь есть возможность читать онлайн «Тим О'Райли - WTF? Гид по бизнес-моделям будущего [litres]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент 5 редакция «БОМБОРА», Жанр: Деловая литература, popular_business, management, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

WTF? Гид по бизнес-моделям будущего [litres]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «WTF? Гид по бизнес-моделям будущего [litres]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Провокационная книга о будущем и технологиях! Уже завтра можно потерять все, если не внедрить искусственный интеллект в свою работу. Вы узнаете, как с помощью новых технологий повысить эффективность бизнес-процессов, увеличить производительность труда и развивать компанию без привлечения инвестиций со стороны. Тим О’Рейли делится бизнес-моделью будущего, которая поможет выстоять в конкурентной борьбе и даже стать главным игроком в отрасли. Вы найдете прорывные инструменты от Amazon, Google, Uber, Apple, Facebook. В формате a4.pdf сохранен издательский макет.

WTF? Гид по бизнес-моделям будущего [litres] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «WTF? Гид по бизнес-моделям будущего [litres]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотя в этом докладе основное внимание уделялось переводу с одного языка на другой, он обобщил понимание того, каким должен быть подход для успеха основного поискового сервиса Google. Достигнутое понимание того, что «простые модели и множество данных лучше, чем более сложные модели, основанные на меньшем количестве данных», стало основополагающим для прогресса во всех областях и легло в основу работы множества компаний Кремниевой долины. Еще более важное значение это имеет для последних достижений в области искусственного интеллекта.

В 2008 году Дж. Патил из компании LinkedIn и Джефф Хаммербачер из Facebook ввели термин «наука о данных», чтобы описать свою работу. Они дали название сфере деятельности, которую несколько лет спустя журнал Harvard Business Review назвал «самой сексуальной работой XXI века». Понимание менталитета науки о данных, подхода к ней и того, чем она отличается от старых методов программирования, имеет решающее значение для всех, кто решает сложные задачи XXI века.

Из того, как Google работает над качеством поиска, можно извлечь важные уроки. Вначале корпорация Google взяла на себя обязательство выдавать результаты поисковых запросов, основываясь на статистических методах, с явно предвзятым отношением к устранению проблем вручную. Ответ на поисковый запрос «Питер Норвиг» должен содержать такие вещи, как его страница в Википедии и его биография на официальном сайте компании, – это должно было находиться вверху поисковой выдачи. Если какая-то страница низкого качества выходила в топ, одним из способов исправить это могло бы стать добавление правила «для запроса «Питер Норвиг» не позволять такой-то странице выходить в топ-10». Google решил не делать этого, а искать корень проблемы. В этом случае решением могло стать нечто вроде «при поиске любого известного человека отдавать предпочтение высококачественным энциклопедическим источникам (например, Википедии)».

Функция приспособленности Команды качественных поисковых запросов Google всегда была актуальной: нашел ли пользователь то, что искал? Один из сигналов, используемых сейчас Google, предельно ясно отражает идею – это сравнение «длинного клика» с «коротким кликом». Если пользователь переходит по первому выданному результату поиска и не возвращается, он, скорее всего, удовлетворен результатом. Если пользователь нажимает на первый результат поиска, проводит некоторое время на этой странице, а затем возвращается, чтобы щелкнуть по строке второго результата, скорее всего, он не совсем удовлетворен. Если пользователи возвращаются сразу же, это сигнал того, что они увидели совсем не то, что искали, и так далее. Если «длинный клик» отмечается на втором, или третьем, или на пятом результате чаще, чем на первом, возможно, этот результат наиболее актуален. Когда один человек делает это, это может быть случайностью. Когда миллионы людей делают один и тот же выбор, это, безусловно, сообщает вам нечто важное.

Статистические методы становятся не только все более мощными; они становятся все более быстрыми и более утонченными. Если наши разработчики программного обеспечения когда-то клепали роботизированные механизмы, то теперь они производят нечто больше похожее на джиннов, могущественных независимых духов из арабской мифологии, которых можно заставить исполнять наши желания, но которые так часто искусно интерпретируют желание своего хозяина в максимально невыгодном для него свете. Подобно метле из диснеевской версии фильма «Ученик чародея», алгоритмические джинны делают все, о чем мы их попросим, но их трактовки могут быть слишком бестолковыми и однобокими, что приводит к непредвиденным и иногда пугающим результатам. Как нам добиться того, чтобы они делали то, что мы их просим?

Управление ими – это процесс сравнения результатов программ и алгоритмов с некой идеальной целью плюс проведение тестирований, чтобы определить, какие изменения приблизят вас к этой цели. В отношении некоторых приложений, таких как поисковый робот Google, ключевыми функциями для анализа могут быть скорость, полнота и новизна. В 1998 году, когда была основана компания Google, сканирование и индексирование веб-страниц происходило каждые несколько недель. Сегодня это происходит практически моментально. В случае определения актуальности это вопрос сравнения результатов программы с тем, что мог бы ожидать информированный пользователь. На первых этапах работы Google эта практика была довольно примитивной. В документе, посвященном поиску Google, опубликованном в то время, когда они еще учились в Стэнфорде, основатели Google Ларри Пейдж и Сергей Брин писали: «Функция ранжирования имеет множество параметров… Выяснить правильные значения этих параметров – это что-то из области черной магии».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «WTF? Гид по бизнес-моделям будущего [litres]»

Представляем Вашему вниманию похожие книги на «WTF? Гид по бизнес-моделям будущего [litres]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «WTF? Гид по бизнес-моделям будущего [litres]»

Обсуждение, отзывы о книге «WTF? Гид по бизнес-моделям будущего [litres]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x