Уильям Паундстоун - Как сдвинуть гору Фудзи

Здесь есть возможность читать онлайн «Уильям Паундстоун - Как сдвинуть гору Фудзи» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2004, ISBN: 2004, Издательство: Альпина Бизнес Букс при содействии Headhunter.ru, Жанр: Деловая литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как сдвинуть гору Фудзи: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как сдвинуть гору Фудзи»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Методику интервьюирования при приеме на работу в корпорацию Microsoft, основанную на решении задач и головоломок, теперь перенимают многие компании, которые хотят выявить наиболее творческих кандидатов среди просто способных. В книге «Как сдвинуть гору Фудзи?» излагается эта методика и предлагается более тридцати трудных задач и головоломок. Книга показывает, как при помощи эффективного творческого и аналитического мышления можно отыскать ответы на самые нестандартные вопросы.
Книга ориентирована прежде всего на руководителей компаний, сотрудников отделов кадров, а также людей, которые хотят подготовиться к нестандартным вопросам во время собеседования. В то же время книга будет интересна и широкой аудитории, так как она поможет любому человеку развить свой творческий и интеллектуальный потенциал.

Как сдвинуть гору Фудзи — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как сдвинуть гору Фудзи», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И получив голос пирата №2, пират №4 может совсем не беспокоиться о том, что думают №1 и №3. План пирата №4 будет таким: ни одной монеты для №1, одна монета для №2, ни одной монеты для №3 и девяносто девять монет для него самого.

Теперь модель нам ясна. В каждом случае самый старший пират должен «купить» ровно столько голосов, сколько ему необходимо, и как можно дешевле. Все остальные деньги достанутся ему самому.

Теперь применим эту модель к ситуации с пятью пиратами, о которой речь и идет в задаче. Вы пират №5. Вам нужно три голоса: ваш собственный и еще два. Таким образом, вам нужно что-то дать двум пиратам, которые больше всего проиграют, если пиратов останется только четверо. Это пираты №1 и №3. Оба не получат ничего, если вас убьют и останется всего четыре пирата. Обоих можно убедить проголосовать за ваш план, если он им что-нибудь сулит. Ваше предложение: ничего не давать пирату №4, дать одну монету №3, ничего не дать №2 и дать одну монету №1. Оставшиеся девяносто восемь монет вы оставите себе.

Это одно из тех абсолютно не соответствующих здравому смыслу решений, которые убеждают многих людей в абсурдности логических головоломок. Если бы пираты формировали коалиции на основе дружеских отношений (что и происходит в телешоу «Последний герой»), все эти рассуждения оказались бы бессмысленными. Но даже если не принимать в расчет возможные дружеские коалиции, решение все равно выглядит сомнительным. Вы можете поверить, что пираты (или наркоторговцы, мафиози, какие-нибудь другие бесчестные эгоисты) спокойно проголосуют за схему, которая вам дает девяносто девять монет, а они получают или одну монетку, или вообще ничего? Да остальные четверо сначала вас застрелят, а уже потом станут заниматься дедукцией.

Эту головоломку использует компания Fog Creek Software из Нью-Йорка. По этому поводу в одной из интернет-конференций появилось сообщение: «Готов поклясться, что генеральный директор Fog Creek загребает 98 процентов прибылей этой компании. Реальная причина, по которой в ней задают этот вопрос, — желание найти смиренных овечек, готовых с этим мириться, если получат какое-нибудь математическое объяснение». [156]

В одной из школ есть такой ритуал в последний день занятий…

Первая вещь, которую необходимо понять, — эта головоломка просто обязана быть проще, чем она кажется на первый взгляд. Ваши интервьюер слишком занят, чтобы сидеть и ждать, пока вы пройдете все сто шагов. Должен быть какой-то трюк, который позволит упростить решение, и ответ должен быть относительно простым. Или все 100 шкафчиков должны остаться открытыми, или ни один из них, или должна отыскаться какая-то закономерность, которая позволит легко решить, сколько будет открытых шкафчиков.

Ваш нетерпеливый интервьюер некоторое время будет сидеть спокойно, пока вы начертите таблицу с номерами с первого по десятый. Сделайте это и делайте отметку в клетке, относящейся к данному шкафчику, если положение его дверцы изменилось. Например, в первом цикле все 100 шкафчиков будут открыты. И вы поставите в таблице соответствующие отметки.

Во втором цикле вы поставите отметки в клетках с четными номерами 2,4,6,8 и 10. Продолжите это до десятого цикла (если бы вы продолжили это делать до 20, 30, 40 и т. д. — у вас получилась бы полная таблица). После десяти циклов ваша таблица будет выглядеть так:

И следующие циклы никак не повлияют на первые десять шкафчиков ведь во время - фото 8

И следующие циклы никак не повлияют на первые десять шкафчиков — ведь во время одиннадцатого цикла будет меняться положение дверец только шкафчиков номер 11, 22, 33… Таким образом, составленная вами таблица для первых десяти ящиков окончательная. Поскольку в начале шкафчики были закрыты, то все шкафчики, положение дверец которых изменилось нечетное количество раз, останутся открытыми, а если положение менялось четное количество раз, шкафчики будет закрытыми.

Это означает, что после 100 циклов шкафчики 1, 4 и 9 останутся открытыми, а все остальные закрытыми. 1,4 и 9 — это точные квадраты, то есть числа, умноженные сами на себя (1 = 1х1; 4 = 2х2; 9 = 3x3). Это очень привлекательная закономерность.

Вы понимаете, почему открытыми остались только те шкафчики, номера которых — это квадраты какого-то числа? Вы столько раз меняете положение дверцы шкафчика, сколько есть множителей в числе, соответствующем его номеру, а эти множители — парные. Например, двенадцать — это 1х12, или 2x6, или 3x4. Поскольку есть три способа разбиения этого числа на пары сомножителей, общее число сомножителей — шесть. Это значит, что положение дверцы этого шкафчика изменится шесть раз. Единственный способ, которым число может избежать четного количества сомножителей, — это такая ситуация, когда его можно представить как пару из двух идентичных сомножителей. Например, девять можно представить как 1 х 9 и также как 3x3. Это дает только три различных сомножителя (1, 3 и 9). Только те шкафчики, номер которых — это квадрат какого-то числа, будут открываться/закрываться нечетное количество раз, и только их дверцы останутся открытыми.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как сдвинуть гору Фудзи»

Представляем Вашему вниманию похожие книги на «Как сдвинуть гору Фудзи» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как сдвинуть гору Фудзи»

Обсуждение, отзывы о книге «Как сдвинуть гору Фудзи» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x