Количество хромосом в кариотипе не зависит от уровня организации живых организмов – некоторые протисты имеют более тысячи хромосом. У человека – 46 хромосом, у собаки – 78, у коровы – 60, у дрозофилы – 8, у шимпанзе – 48, у картофеля – 48 и т. д. Кариотип человека включает 44 аутосомы и 2 половые хромосомы, гетерогаметным полом является мужской, имеющий половые хромосомы Х и Y (рис. 3.5).
Рис. 3.5 . Формула кариотипа человека
Структурно-функциональная организация хромосом
Морфология хромосом эукариот характеризуется единством структурной организации. Каждая хромосома кариотипа представляет собой сложную структуру, в которой нить ДНК взаимодействует с различными белками. Благодаря такому строению, осуществляется динамика спирализации – деспирализации хромосом во время клеточного цикла. Компактизация хроматина, необходимая для осуществления клеточного деления, позволяет уменьшать длину хромосом в тысячи раз. Следует отметить, что построение модели организации хромосомы еще далеко от завершения.
Хромосома имеет фибриллярное тельце – кинетохор, к которому присоединяются нити веретена деления во время митоза. Область расположения кинетохора получила название центромеры,или первичной перетяжки. Если центромера расположена не на конце хромосомы, то она делит ее на два плеча. В зависимости от расположения центромеры различают три морфологических типа хрососом: метацентрические (равноплечие), субметацентрические (неравноплечие) и акроцентрические (одноплечие).
Некоторые хромосомы кариотипа имеют вторичную перетяжку или область ядрышкового организатора. Это место формирования ядрышка. В ядрышке происходит синтез р-РНК и образование субъединиц рибосом. У разных организмов имеется от 1 до 10 ядрышек, а у некоторых их нет совсем.
Роль хромосом как структурных носителей генетической информации эукариот была окончательно определена в результате работ школы выдающегося американского генетика Т. Моргана. К 1920-м годам его школой была сформулирована хромосомная теория наследственности , суть которой в следующем:
1. Гены располагаются в хромосомах.
2. Каждая хромосома представляет группу сцепления генов.
3. Каждый ген занимает в хромосоме определенное место – локус.
Поскольку число генов в организме несоизмеримо больше числа хромосом, то понятно, что каждая хромосома несет много генов. Гены, расположенные на одной хромосоме являются сцепленными.
У эукариот каждая пара гомологичных хромосом имеет гомологичные локусы. Гены, расположенные в таких гомологичных локусах называются аллелями. Аллель– это вариант гена. Ген может иметь много аллелей в популяции данного вида (так называемый множественный аллелизм), но у конкретного организма всегда только два аллеля (по числу гомологичных локусов). Организм, у которого оба аллеля одинаковые, называется гомозиготой(по данному гену). Организм, у которого аллели разные, называется гетерозиготой.
Помимо ядра, небольшая доля генетической информации клетки находится в таких органоидах, как митохондрии и хлоропласты, имеющих собственные генетические системы. Как митохондрии, так и хлоропласты имеют свои ДНК, все виды РНК (и-РНК, т-РНК, р-РНК) и рибосомы, позволяющие осуществлять независимый синтез белка. ДНК этих органоидов не связана с белками, а представлена кольцевой структурой, аналогичной хромонеме прокариот.
В хромонеме прокариот и полуавтономных структур гены также занимают определенные локусы. Хромонема образует одну группу сцепления.
Несмотря на наличие собственных генетических систем, большая часть белков и митохондрий, и хлоропластов синтезируются в ядре клетки. Поэтому они получили название полуавтономных структур.
На уникальном свойстве самоудвоения ДНК базируется способность живых организмов к размножению. В основе процессов размножения и индивидуального развития организмов лежит клеточное деление.
Время существования клетки от деления до деления называется клеточным, или митотическим, циклом. Его величина может сильно различаться для разных организмов и для стадий развития. Все многообразные процессы клеточного цикла (как и другие процессы клетки) проходят под генетическим контролем. Специальные гены контролируют стадии репликации ДНК, процессы спирализации и деспирализации хромосом, деление цитоплазмы и другие процессы. Нарушения в работе этих генов могут блокировать процессы клеточного цикла на различных этапах.
Читать дальше
Конец ознакомительного отрывка
Купить книгу