Обычно клетки моментально исправляют простые «опечатки», но если что-либо пойдет не так (и ведь обязательно пойдет), дефект может навсегда зафиксироваться в ДНК. Каждый живущий ныне человек на деле родился с десятками мутаций, которых избежали его родители. Некоторые из этих мутаций могли бы привести к летальному исходу, если бы у каждого из нас не было двух копий каждого гена, по одному от каждого родителя. Если один из генов работает неправильно, его может подменить второй. Тем не менее все живые организмы с возрастом продолжают накапливать мутации. Небольшие существа, которые обладают высокой температурой тела, особо подвержены риску: на молекулярном уровне тепло является интенсивным движением, а чем сильнее это движение, тем более вероятна возможность ошибки в извивах ДНК при ее копировании. Млекопитающие являются достаточно крупными созданиями и, к счастью, поддерживают постоянную температуру тела, но и они становятся жертвами других мутаций. Когда в цепочке ДНК оказываются рядом два основания Т, ультрафиолетовое излучение может соединить их под неправильным углом, в результате чего образуется петля в ДНК. Такие дефекты могут полностью убить клетку или вывести ее из нормального режима. По сути, все животные (и растения) обладают специальными ферментами, которые расправляют петли T-оснований, но млекопитающие в процессе эволюции лишились таких веществ – именно поэтому млекопитающие подвержены солнечным ожогам.
Помимо самопроизвольных мутаций ДНК может быть повреждена также и внешними факторами, которые называются мутагенами. Некоторые мутагены причиняют больший урон, чем радиоактивность. Опять же, радиоактивные гамма-лучи приводят к образованию свободных радикалов, которые расщепляют фосфатно-сахарную основу ДНК. Теперь ученые знают, что если разорвется лишь одна из нитей двойной спирали, клетки способны с легкостью исправить повреждение, зачастую в течение часа. У клеток есть молекулярные «ножницы», с их помощью вырезается искалеченный участок ДНК, после чего в ход идут ферменты, которые прочесывает неповрежденную нить и добавляют в каждой точке комплементарные основания А, Ц, Г или Т. Процесс восстановления быстр, прост и точен.
Двойная спираль разрывается реже, но последствия этого более страшные. Двойные разрывы напоминают наспех ампутированные конечности: с обеих концов разорванной ДНК выступают остатки одиночной спирали. В клетках есть две практически одинаковые копии каждой хромосомы. Если в одной из них произойдет разрыв двойной спирали, клетки способны сравнить испорченные участки с другой хромосомой (будем надеяться, неповрежденной) и выполнить исправление. Но процесс этот трудоемкий, и если клетки обнаруживают, что вокруг есть повреждения, для которых необходимо быстрое восстановление, то зачастую происходит просто сцепление выступающих обрывков спирали по нескольким выровненным основаниям (даже если остальные не выровнены), а отсутствующие основания спешно заполняются. Неверно определенные основания могут вызвать ужасающую мутацию сдвига рамки считывания – и таких неверных «угадываний» предостаточно. Клетки, которые восстанавливают разрывы двойной спирали, совершают неверные действия приблизительно в 3000 раз чаще, чем при обычном копировании ДНК.
Хуже того, радиоактивность способна уничтожать фрагменты ДНК. Высокоорганизованным существам приходится сворачивать многочисленные витки ДНК, образуя маленькие ядра; человеческий рост (чуть менее двух метров) сжался бы до размеров меньше двух тысячных долей сантиметра. Такое интенсивное сдавливание часто приводит к тому, что ДНК становится похожей на запутанный телефонный шнур: спираль пересекает саму себя или многократно изгибается. Если гамма-лучи проникнут в ДНК и разорвут ее рядом с одним из таких пересечений, то появится множество свободных концов, расположенных близко друг к другу. Клетки «не знают», как были выстроены исходные спирали (у них нет памяти), и поэтому, стремясь спешно исправить повреждение, они иногда скрепляют то, что должно быть отдельными спиралями. Так вырезается и фактически уничтожается промежуточный участок ДНК.
Что же происходит в результате таких мутаций? Клетки, которые подавлены большим числом повреждений ДНК, могут почувствовать неладное и уничтожить себя, чтобы не жить с нарушениями функций. В небольших дозах такое самопожертвование щадит тело, но если одновременно умрет слишком много клеток, то могут отключиться целые системы органов. В сочетании с интенсивными ожогами такие отключения органов вызвали многочисленные случаи смертей в Японии, и некоторые из жертв, которые не умерли сразу же, вероятно, желали бы такого исхода. Те, кому удалось выжить, рассказывают о том, что ногти у людей отпадали словно высохшая скорлупа. Они вспоминают «обугленные куклы» ростом с человека, которые были свалены штабелями в проходах между домами. Кто-то вспоминает человека, ползущего на двух культях и держащего обугленного ребенка вниз головой. Кому-то из памяти появляется женщина без сорочки, с пылающими, как «плоды граната», грудями.
Читать дальше
Конец ознакомительного отрывка
Купить книгу