Как Гейзенбергу удалось создать крепкую теорию из того, что в те времена было, считай, философскими предпочтениями? Он поставил себе задачу перевести представление о физике, основанной на «наблюдаемом», то есть на измеримых количествах, в математический аппарат, который, как и Ньютонов, можно применять для описания физического мира. Разрабатываемая им теория должна была быть применима к любой физической системе, но он развивал ее в контексте мира атома и с начальной целью объяснить путем общей математической теории причины успеха Боровской частной модели.
Гейзенберг первым делом взялся определять наблюдаемые величины, подходящие для атома.
Поскольку в атомном мире мы измеряем частоту света, испускаемого атомом, а также амплитуду – или интенсивность – спектральных линий, именно эти свойства Гейзенберг и выбрал. Затем он применил методы традиционной математической физики, чтобы вывести связь между классическими ньютоновскими наблюдаемыми величинами – положением в пространстве и скоростью – и спектральными данными. Он задался целью заместить с помощью этой выявленной взаимосвязи все величины, наблюдаемые в Ньютоновой физике, квантовым эквивалентом. Как выяснится, этот шаг требовал и творческого подхода, и смелости, потому что Гейзенбергу нужно было превратить положение в пространстве и импульс в математические сущности, оказавшиеся и новыми, и диковинными.
Новый тип переменных потребовался потому, что положение тела в пространстве, допустим, определяется указанием одной отдельной точки, спектральные данные же требуют другого описания. Каждое из многочисленных свойств света, испускаемого атомом, – цвет, яркость – описывается не одним числом, а целым набором чисел. Данные образуют матричную систему, потому что существует спектральная линия, соответствующая переходу из одного исходного состояния атома в любое конечное, и получается значение энергии для каждой пары Боровских энергетических уровней. Если это все кажется сложным, не переживайте – это на самом деле сложно. Когда Гейзенберг придумал эту систему, он сам назвал ее «очень странной» [376] Niels Blaedel, Harmony and Unity: The Life of Niels Bohr (New York: Springer Verlag, 1988), стр. 111.
. Но вот суть того, что он сделал: он удалил из теории электронные орбиты, которые можно себе вообразить, и заменил их чисто математическими абстракциями.
Работавшие с теориями атома до Гейзенберга стремились, как и Резерфорд, обнаружить механизм процессов внутри атома. Они мыслили недоступное наблюдению содержимое атома как существующее в действительности и пытались вывести природу наблюдаемых спектральных линий, основываясь на догадках о поведении содержимого атома – например, движущихся по орбите электронов. Их рассуждения всегда предполагали, что составляющие атома имеют те же ключевые характеристики, что и предметы, к которым мы привыкли в повседневности. И лишь Гейзенберг мыслил иначе, и ему хватило пороху смело объявить, что орбиты электронов – за пределами наблюдения, а значит – не реальны, и им нет места в теории атома. Таков был подход Гейзенберга не только к атому, но и к любой физической системе.
Настаивая на таком ходе рассуждений, Гейзенберг отказался от Ньютоновой картины мира как организации материальных объектов, у которых есть отдельное существование и определяемые свойства вроде скорости и положения в пространстве. Его теория, когда была доведена до совершенства, потребовала от нас принятия мира, основанного на иной понятийной схеме, – мира, в котором путь предмета и даже его прошлое и будущее не определены точно.
В теории Гейзенберга положение частицы представляется бесконечная матрица чисел, а не знакомые нам пространственные координаты
Учитывая, что в наше время многим людям непросто приспособиться к новшествам – к эсэмэс-общению и соцсетям, например, – можно лишь вообразить, какой открытости ума потребовала теория, утверждавшая, что электроны и ядра атомов, из которых мы с вами состоим, не имеют явно выраженного существования. Но подход Гейзенберга требовал именно этого. То была не просто какая-то новая физика, а совершенно новое представление о действительности. Оно привело Макса Борна к вопросу об извечном разделении между физикой и философией. «Я теперь убежден, – писал он, – что теоретическая физика есть подлинная философия» [377] Max Born, My Life and Views (New York: Charles Scribner’s Sons, 1968), стр. 48.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу