Одновременно с транспортом протонов идет и перенос OH-ионов на внешнюю верхнюю сторону листа. Здесь рН повышается, что приводит к выпадению в осадок соединений типа MeCO3 в виде белого налета. (где Me – Ca, Mg, и др.)
В целом процесс потребления HCO3 – менее эффективен, чем поглощение CO2 из-за своей энергетической зависимости. Очевидно растения выработали его как приспособление к существованию в щелочных, стоячих водах. Растения же кислых проточных вод такого механизма не имеют либо, как минимум, отдают предпочтение поглощению CO2.
В нейтральных до слабощелочных водах с низкой карбонатной жесткостью а следовательно и с малым количеством CO2 и HCO3-большинство растений растет крайне плохо.
Аквариумист может добиться улучшения доставки CO2 водным растениям двумя способами. Во-первых, можно увеличить степень перемешивания воды в аквариуме. Это уменьшит толщину пограничного слоя, и будет гарантировать, что уровни CO2 в воде и воздухе находятся в равновесном состоянии. Этот метод недорог, легко осуществим, и в большинстве случаев дает положительный эффект.
Во-вторых, газ CO2 может быть введен в аквариум. Это – более дорогое удовольствие и при выполнении ненадлежащим образом может приводить к гибели рыб. Однако этот метод становится единственно возможным при культивировании растений полностью неспособных использовать
Аквариумист должен знать, что растения состоят из углерода [C] на сорок три процента сухого веса, а в аквариуме без подачи углекислого газа (CO2) его настолько мало, что им просто негде взять основной строительный материал для своих клеток.
Растения, используя световую энергию, кислород, углерод и водород осуществляют фотосинтез. С помощью фотосинтеза углеводы, например глюкоза, получается из двуокиси углерода (углекислого газа) по реакции:
CO2 +6H2O +674 ккал – > С6Н12О6 +6H2О.
Как видно, это невозможно без достаточного количества CO2.
По этой формуле также видно, что процесс фотосинтеза растений требует определенного уровня энергии света. Если свет недостаточно яркий, фотосинтез происходить не будет. При уровне освещенности, близком к оптимальному [1], фотосинтез будет происходить все быстрее.
Данные исследований фирмы «Тропика», крупнейшей компании по выращиванию аквариумных растений, показали, что в природе, при достаточном количестве питательных веществ, углекислый газ вместе со светом являются главными лимитирующими факторами роста растений. При условии насыщения воды всеми питательными веществами. В компании «Тропика» две недели наблюдали результаты по выращиванию риччии, и получили следующие результаты:
o нет подачи углекислого газа плюс низкая освещенность – рост растений равен нулю (за две недели почти никакой прибавки массы листьев);
o при малой подаче углекислого газа и низкой освещенности рост увеличивается в четыре раза;
o при малой подаче углекислого газа и высокой освещенности рост усиливается до 6 раз.
Даже средний уровень подачи CO2 в плохо освещенном аквариуме приводит к 2-х кратному усилению роста растений. Потому что может производиться больше хлорофилла без фатальных последствий для баланса энергии растения – растение тратит меньше энергии и ресурсов для извлечения CO2 из воды, и остается больше энергии для оптимизации переработки световой энергии в ткани растения. В результате, хотя не увеличивалась интенсивность освещения, растение может более эффективно использовать уже имеющийся свет. Очевидно, что выгода от увеличения интенсивности освещения и подачи углекислого газа превосходит эффект от повышения только одного из них.
Из вышеизложенных фактов следует что: интенсивность освещения должна соответствовать количеству подаваемого в аквариум углекислого газа и наоборот.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.