Рис. 16. Быть может, величайшее достижение биологии ХХ века – расшифровка генетического кода. На таблице показано, каким аминокислотам в белке соответствуют триплеты нуклеотидов в матричной РНК. Например, если в первой позиции стоит урацил, во второй цитозин и в третьей гуанин, то это сочетание кодирует аминокислоту серин. 1 – аминокислоты с положительно заряженной боковой цепью; 2 – отрицательно заряженные; З – полярные (имеющие сродство к молекулам воды); 4 – неполярные, гидрофобные, отталкивающие воду. Терм – терминирующие бессмысленные кодоны. На них синтез белка прерывается.
Остальные 61 триплет (кодон) соответствуют 20 аминокислотам. Такой код, когда несколько букв читаются одинаково, называется вырожденным. Например, лейцин, серин и аргинин кодируются шестью триплетами; пролин, валин и глицин – четырьмя; изолейцин – тремя; аспарагиновая и глутаминовая кислоты – двумя, а для метионина имеется лишь один кодон. Он же, если стоит в начале гена, исполняет роль заглавной буквы.
Это похоже на ситуацию в дореволюционном русском алфавите: тогда существовало два символа для звука «ф» (ферт и фита) и целых три для «и» («и» просто, «и» с точкой и ижица).
Первые исследователи полагали, что аминокислотные цепочки прямо собираются на нуклеотидных цепочках. Дело оказалось гораздо сложнее.
Во-первых, нет никакого стерического (морфологического) соответствия между кодоном и той аминокислотой, которую он кодирует. Соответствие между ним и достигается молекулой особой нуклеиновой кислоты, которую называли по-разному: РНК – посредник, адаптор, растворимая и, наконец, транспортная. На одном ее конце присоединена аминокислота, а на другом расположена последовательность комплементарная кодону (антикодон).
Во-вторых, матрицей для белкового синтеза служит не непосредственно ДНК, а копируемый с нее «рабочий чертеж» – РНК, получившая название информационной или матричной (мРНК).
Итак, мы должны различать процессы: матрицирование самого гена, то есть синтез ДНК на ДНК, синтез мРНК на ДНК и синтез белка на матрице мРНК. Первый процесс называется репликацией, второй – транскрипцией и третий – трансляцией.
Еще короче это выражается в так называемой «центральной догме» молекулярной биологии:
В предисловии я обещал строго придерживаться того набора фактов, которого требует школьная программа. Однако некоторые положения в ней излагаются слишком сжато, иные неверно, а многие любопытные достижения последних лет просто еще не дошли до учебников. Теперь самое время на них остановиться.
Полярность гена.Длинные цепочечные молекулы биополимеров – полипептидов и нуклеиновых кислот – полярны. Иными словами начало и конец цепи аминокислотных остатков и нуклеотидов различаются друг от друга.
Рис. 15. Схема строения двухцепочечной ДНК и комплементарной ей РНК. Для простоты ДНК показана не закрученной в спираль, какой она обычно бывает в клетке. Такой участок может кодировать две аминокислоты – серин и цистеин. Ф – остаток фосфорной кислоты, А, Г, Ц, Т, У соответственно аденин, гуанин, цитозин, тимин, и урацил. Нетрудно видеть что смысловая цепь и комплементарная ей антипараллельны. 3’– конец одной стыкуется с 5’-концом другой. Синтез матричной РНК начинается 3’– конца смысловой цепи. Следовательно мРНК Нужно «читать» с 5’-конца. С него и начинается белковый синтез. Нагляднее принцип антипараллельности цепей дан на шуточной схеме внизу. Теперь представим себе, что обе нарисованные внизу змеи свернутся в кольцо и каждая возьмет в зубы собственный хвост, и мы получим точную копию кольцевой хромосомы некоторых фагов и бактерий.
Нетрудно сообразить, почему полярны полипептиды, слагающие белки. Уже упоминалось, что аминокислоты имеют две функциональные группировки, сшивающие их в полипептид, – аминную и карбоксильную. Значит, у первого звена аминокислотной последовательности остается свободной аминная группа ( —NH 2 ), а у последнего – карбоксильная ( —COOH ). Так и говорят: N – конец и C – конец полипептида.
Читать дальше