При половом размножении потомки получают от предков по половине ДНК, и эти молекулы соединяются вместе. Следовательно, перед таким размножением имеющийся набор молекул ДНК нужно поделить пополам: если этого не сделать, в следующем поколении ДНК будет двойное количество, потом – четырехкратное и далее по степеням двойки. Это путь в никуда, потому что такие клетки не выживают 13 13 Впрочем, растения, животные и грибы иногда пользуются и таким механизмом; селекционеры уже в 20 в. обнаружили, что это может принести некоторую пользу.
. Решению этой проблемы служит особый способ деления клеток – мейоз, при котором двойной набор хромосом сначала удваивается, а потом делится на четыре одинарных. Заодно эти хромосомы обмениваются участками, дополнительно увеличивая потенциальное разнообразие.
Быть может, самая большая проблема полового размножения, особенно для одноклеточных, состоит не в его сложности и энергозатратности, а в поиске партнера . Хорошо создать новые комбинации аллелей, но с кем? Если мы представим себе одноклеточных существ размером в доли миллиметра, пассивно плывущих в океане (пусть и в тонком, почти двумерном поверхностном слое), которым нужно найти представителя своего вида… Задача почти нерешаемая, и многие организмы старательно уклоняются от ее решения. Колониальность – один из способов. Размножаться половым путем, лишь когда (и если) партнер обнаружен, – другой. И все равно удивительно, что множество видов одноклеточных так или иначе решают эту задачу! И новые комбинации генов становятся материалом для того, чтобы отбору было из чего отбирать.
ж. Вендский (а может, и кембрийский) взрыв
И все равно они слишком простые! Биосфера эволюционирует почти три миллиарда лет и не породила ничего сложнее амебы! Когда так неэффективно работают правительства, их свергают. Теологи-креационисты часто утверждают, что в научной картине эволюции слишком много совпадений и случайностей. На самом деле их до обидного мало, иначе для эволюции биосферы не потребовалось бы столько времени.
Как это часто бывало в эволюции биосферы (а может, еще и будет), предпосылки для появления новых существ возникли заранее. В первую очередь сюда относятся разнообразные молекулы на поверхности клеток, которые могут служить «молекулярным клеем», физически соединяющим клетки. Кроме того, еще одноклеточные прокариоты научились пользоваться некоторыми веществами как химическими сигналами, чтобы воздействовать друг на друга. В колониях, задействующих и «клей», и сигнальные вещества, клетки порой оказываются вовсе не так одинаковы, как можно предполагать. Многоклеточность возникла далеко не на пустом месте и, вероятно, стала следствием обострившейся конкуренции простейших.
Первыми, как кажется, попытались стать многоклеточными водоросли. При этом они получили размерное преимущество (попробуйте-ка съесть секвойю, если вы беззубая амеба), но начали существенно терять в плавучести, попросту говоря – многие были вынуждены осесть на дно. В результате экосистема начала быстро приобретать пространственную неоднородность, при которой экологические ниши различаются положением в пространстве, а организмам потребовалась, к примеру, система транспорта веществ. Но водоросли имеют лишь косвенное отношение к нашему сюжету…
Настоящим шагом вперед к появлению нас с вами стали многоклеточные животные. Как понятно из названия, они состояли из множества клеток (сначала – несколько сотен, а потом несравненно больше). У самых ранних и примитивных многоклеточных уже было несколько разных типов клеток. Впрочем, если взглянуть на дожившего до нашего времени трихоплакса, недалеко ушедшего от первых многоклеточных, эти разные типы клеток могли меняться местами и превращаться один в другой. Впоследствии такая возможность была почти утрачена.
Многоклеточные животные получили уже не раз упомянутое размерное преимущество, то есть они могли есть любых одноклеточных (прокариот и эукариот), а сами становились их добычей главным образом после своей гибели. Но новое, более сложное строение влечет за собой и новые проблемы. Главная из них заключается в том, что при половом размножении в результате слияния двух клеток с одинарным набором хромосом получается клетка с двойным набором хромосом (пока все прекрасно) – но она одна! А из нее нужно образовать все многочисленные типы клеток, да еще и расположить их в нужных местах. К тому же эти разные типы клеток должны быть генетически одинаковыми (пока решаемая проблема) – но при этом быть функционально и анатомически разными, а вот это уже сложнее. На нашей планете у многоклеточных в разных клетках одного организма работают разные гены из общего набора – но их нужно в нужное время в нужном месте включить, а другие, ненужные, – выключить. Это потребовало масштабной системы регуляции работы генов; значительная часть генов входит именно в эту систему.
Читать дальше