Оргел обнаружил, что при определенных обстоятельствах цепи РНК могут копироваться таким образом без какой-либо помощи ферментов. Возможно, именно так первая жизнь создала копии своих генов.
К 1987 году Оргел мог взять цепь РНК длиной в 14 нуклеотидов и создать дополняющие цепи длиной тоже в 14 нуклеотидов. Больше ему сделать не удалось, но этого было достаточно, чтобы заинтриговать Шостака. Его ученица Катажина Адамала попыталась запустить такую реакцию в протоклетках.
Они обнаружили, что для работы такой реакции нужен магний. Но магний уничтожил протоклетки. Впрочем было и простое решение: цитрат, который почти идентичен лимонной кислоте и который присутствует во всех живых клетках.
В исследовании, опубликованном в 2013 году, они добавили цитрат и обнаружили, что тот обволок магний, защищая протоклетки и позволяя шаблону продолжать копироваться. Другими словами, им удалось сделать то, что Луизи предлагал в 1994 году. «Мы запустили химию репликации РНК внутри этих жирно-кислотных везикул», говорит Шостак.

Протоклетки Шостака могут жить в сильном тепле
Всего за десять лет исследований команде Шостака удалось совершить невероятное.
Они создали протоклетки, которые сохраняют свои гены, при этом забирая полезные молекулы снаружи. Эти протоклетки могут расти и делиться и даже соперничать между собой. РНК может воспроизводиться внутри них. С какой стороны ни посмотри, они были похожи на первую жизнь.
Еще они были весьма устойчивыми. В 2008 году группа Шостака обнаружила, что эти протоклетки могут переживать нагрев до 100 градусов по Цельсию, температуры, которая уничтожает большинство современных клеток. Следовательно, эти протоклетки были похожи на первую жизнь, которая должна была переживать сильное тепло от постоянных ударов метеоритов.
«Шостак делает большую работу», говорит Армен Мулкиджанян.
Тем не менее, на первый взгляд, подход Шостака идет вразрез с 40 годами исследований происхождения жизни. Вместо того чтобы озадачиться «сперва воспроизводством» или «сперва компартментализацией», он решил делать оба дела сразу.

Молекулы жизни ведут себя крайне сложно
Это открывает путь к новому подходу к поиску происхождения жизни — единому, объединенному, унифицированному подходу. Он должен охватить все функции первой жизни сразу и одновременно. Эта гипотеза «сперва всё» уже насобирала достаточно свидетельств и может решить все проблемы существующих идей. Подробнее о ней — в следующей части.
Несколько лет назад эта идея получила мощный толчок, благодаря результату, поддерживающему устоявшуюся теорию «мира РНК».
К 2009 году у сторонников мира РНК была большая проблема. Они не могли сделать нуклеотиды, строительные блоки РНК, как если бы это происходило в условиях ранней Земли. Это и привело людей к мысли, что первая жизнь вовсе не была построена на РНК, как мы выяснили в третьей части.

Земля — единственное место, где есть жизнь. Пока
Джон Сазерленд думал об этой проблеме с 1980-х. «Я думал, что продемонстрировать, что РНК может самособираться, было бы очень круто», говорит он.
К счастью для Сазерленда, он получил работу в Лаборатории молекулярной биологии (LMB) в Кембридже. Большинство научно-исследовательских институтов заставляют своих сотрудников постоянно генерировать новые работы, но LMB нет. Поэтому Сазерленд мог хорошенько обдумать, почему сделать нуклеотид РНК так сложно, и провел годы, разрабатывая альтернативный подход.
Его решение привело его к совершенно новой идее о происхождении жизни: все ключевые компоненты жизни могли сформироваться одновременно.
«В химии РНК были определенные аспекты, которые не работали», говорит Сазерленд. Каждый нуклеотид РНК состоит из сахара, основания и фосфата. Но заставить сахар и основание соединиться оказалось невозможно. Молекулы просто не той формы.
Поэтому Сазерленд начал пробовать совершенно другие вещества. В конечном счете его команда пришла к пяти простым молекулам, включая другой сахар и цианамид, родственный цианиду. Эти химические вещества пропустили через цепочку реакций и в конечном итоге сделали два из четырех нуклеотидов РНК, не делая отдельные сахара или основания.
Читать дальше