У бактерий и архей нет ни цитоскелета, ни митохондрий, ни системы замкнутых внутренних мембран. Поэтому инфицирующие их вирусы не образуют различимых под микроскопом «вирусных фабрик». Вместо этого они превращают в «вирусную фабрику» всю пораженную клетку целиком. Хозяйский геном при этом обычно полностью разрушается (или, по крайней мере, инактивируется), так что в клетке — правильнее сказать, в бывшей клетке — экспрессируется только геном вируса. Особое искусство использования хозяйской клетки выработали, например, некоторые вирусы цианобактерий — организмов, более знакомых нам как синезеленые водоросли. Поражающие их вирусы для краткости называют цианофагами. Существует вирус-цианофаг, который, разрушив зараженную клетку изнутри, начинает синтезировать в ней свои собственные фотосинтетические белки (от аналогичных белков цианобактерии они отличаются особо высокой устойчивостью к ультрафиолету). В итоге в разрушенной клетке создается новый аппарат фотосинтеза, обеспечивающий энергией процессы репликации вирусной ДНК и сборки вирусных частиц [135] Thompson L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism // Proceedings of the National Academy of Sciences , 2011, V. 108, № 39, E 757 −E 764 .
. И, таким образом, бывшая клетка цианобактерии превращается не более и не менее как в фотосинтезирующий вирус [136] Forterre , 2010.
. Более яркую иллюстрацию существования вирусного метаболизма просто трудно представить.
Исторически сложились два разных подхода к вирусам. Одни авторы считают, что вирус как таковой (the virus «self») — это не что иное, как компактная вирусная частица, то есть вирион [137] Bamford D. H. Do viruses form lineages across different domains of life? // Research in Microbiology , 2003, V. 154, № 4, 231–236.
. А другие авторы убеждены, что вирион и внутриклеточная «вирусная фабрика» суть равноправные стадии единого жизненного цикла, который надо рассматривать не иначе как целиком [138] Raoult D., Forterre P. Redefining viruses: lessons from Mimivirus // Nature Reviews Microbiology , 2008, V. 6, 315–319.
. Переходя от первого подхода ко второму, мы получаем заведомо более полную систему. Очевидно, что это уже большое преимущество. В конце концов, любой грамотный зоолог или ботаник согласится, что всегда лучше исследовать полный жизненный цикл интересующего нас организма, чем какую-то одну стадию (неважно, взрослую или нет). Этот подход вполне можно распространить и на вирусы. Более того, он распространяется на них сам собой. В конце концов, не случайно никто никогда не сомневался в том, что вирусами должны заниматься биологи, а не химики.
Представим себе внутриклеточного паразита, в жизненном цикле которого есть две стадии — вегетативная (питающаяся и растущая) и расселительная. Вегетативная стадия обладает метаболизмом, ростом и экспрессией генов, но существовать она может только внутри чужой клетки, потому что нигде больше для нее нет подходящей среды. Расселительная стадия метаболически неактивна, гены в ней не экспрессируются, и вообще никакие жизненные процессы не идут, но зато она благодаря плотной оболочке может перемещаться по планете на большие расстояния, заражая новых хозяев. У клеточного организма такая расселительная стадия называлась бы спорой . Во всей этой картине нет ровно ничего фантастического. Облигатные внутриклеточные паразиты, неспособные жить ни в какой другой среде и размножающиеся неактивными спорами, есть не только среди бактерий, но даже среди эукариот. Ну и что, собственно, мешает считать, что вирион — это спора вируса, а после проникновения в клетку он просто переходит в вегетативную стадию? Да ничего.
3. Вторичность вирусов по отношению к клеткам
В ХХ веке было широко распространено мнение, что вирусы являются не более чем побочными продуктами клеточной жизни — то ли «взбесившимися» фрагментами клеток, освоившими самостоятельное существование, то ли целыми клетками, которые перешли к паразитизму внутри других клеток и в результате до предела упростились. Однако современные исследования вирусных геномов показывают, что это почти наверняка неверно. Дело в том, что обнаружено довольно много специфически вирусных генов, не встречающихся ни в каких клетках, — например, гены, кодирующие белки вирусного капсида (для любой клетки они бесполезны). То же самое можно сказать о некоторых генах и белках, обеспечивающих вирусную репликацию. Биоинформатика довольно быстро выделила набор чисто вирусных белков — в основном обеспечивающих копирование вирусных генов и сборку вирусной частицы, — которые широко распространены в мире вирусов, но не найдены ни у одной клеточной формы жизни [139] Koonin E. V., Senkevich T. G., Dolja V. V. The ancient Virus World and evolution of cells // Biology Direct , 2006. V. 1, № 1, 29.
. Скорее всего, это означает, что ни у каких клеточных организмов этих белков и соответствующих им генов просто-напросто никогда и не было. А это, в свою очередь, приводит к выводу, что вирусы вовсе не произошли от клеток. Их генетическое разнообразие имеет самостоятельный источник — вероятно, не менее (если не более) древний, чем первая живая клетка.
Читать дальше
Конец ознакомительного отрывка
Купить книгу