В 19.30 в четверг, имея за спиной десятилетия прогресса молекулярной биологии, я вышел на ту же сцену, на которую выходил и Шрёдингер, и, как и он, увидел перед собой премьер-министра в декорациях несравненного Экзаменационного зала Тринити-колледжа. Под огромной люстрой, перед портретами Уильяма Молино, Джонатана Свифта и им подобных я смотрел в аудиторию из четырехсот запрокинутых лиц и ярких огней камер всех видов и типов. В отличие от Шрёдингера я знал, что моя лекция будет записана, передана в прямом эфире, опубликована в блогах и выложена в твиттер, так как я снова затрону тот вопрос, для ответа на который так много сделал мой предшественник.
Следующий час с лишним я объяснял, что жизнь в основном состоит из биологических машин, управляемых ДНК. Все живые клетки работают на программах, записанных в ДНК, которые управляют сотнями тысяч белковых роботов. Мы оцифровывали жизнь десятилетиями, с тех пор как впервые представили, как читать программу жизни посредством секвенирования ДНК. Теперь мы можем идти в другом направлении, начиная с компьютерной цифровой основы, создавая новую форму жизни, химически синтезируя ее ДНК, а потом доводя ее до получения настоящего организма. И поскольку информация нынче цифровая, мы можем пересылать ее куда угодно со скоростью света и снова творить ДНК и жизнь на том конце. Рядом с премьер-министром Эндой Кенни сидел мой давний самопровозглашенный соперник Джеймс Уотсон. Когда я договорил, он взобрался на сцену, пожал мне руку и любезно поздравил меня с «прекрасной лекцией» {10} 10 http://edge.org/conversation/what-is-life
.
«Жизнь на скорости света», частично основанная на моей лекции в Тринити-колледже, задумана для того, чтобы описать наш невероятный научный прогресс. Всего за одну человеческую жизнь мы продвинулись от «апериодических кристаллов» Шрёдингера до понимания того, что если с записанного генома можно построить синтетическую хромосому и, следовательно, синтетическую клетку, то ДНК представляет собой программное обеспечение жизни. Эта работа опирается на потрясающие достижения в течение последнего полувека, которыми мы обязаны плеяде невероятно одаренных личностей в лабораториях всего мира. Я сделаю обзор этих разработок в молекулярной и синтетической биологии, отчасти чтобы отдать должное этому эпическому предприятию, отчасти чтобы признать вклады, сделанные ключевыми ведущими учеными. Я не ставил себе цели написать полную историю синтетической биологии, а только лишь пролить немного света на силу этого выдающегося совместного предприятия, которое мы называем наукой.
ДНК как оцифрованная информация не только накапливается в компьютерных базах данных, но теперь может передаваться как электромагнитная волна на скорости света или близко к ней, через биологический телепортер, чтобы заново сотворить белки, вирусы и живые клетки где-то далеко, возможно, навсегда меняя наш взгляд на жизнь. С этим новым пониманием жизни и недавними прорывами в наших способностях манипулировать ею широко раскрывается дверь, за которой появляются новые волнующие возможности. Индустриальная эпоха идет к концу, но мы становимся свидетелями начала эры биологического проектирования. Человечество вот-вот войдет в новую фазу эволюции.
Глава 2. Химический синтез как доказательство
Этот тип синтетической биологии, великая попытка сотворения искусственной жизни, также бросает вызов нашей привычной теории жизни. Если жизнь – это всего лишь самоподдерживающаяся химическая система, способная к эволюции по Дарвину, и мы действительно понимаем, как химия может поддерживать эволюцию, то мы должны быть способны синтезировать искусственную химическую систему, способную к эволюции по Дарвину. Если мы в этом преуспеем, то, значит, теории, на которых основывался наш успех, показали себя как правомочные… И напротив, если мы не сможем получить искусственную форму жизни при попытке создать химическую систему… мы должны сделать вывод, что наша теория жизни что-то упускает.
Стивен Беннер, 2009
{11} 11 Benner, Steven. Life, the Universe… and the Scientific Method (2009), стр. 45.
Людей издавна завораживала идея искусственной жизни. Начиная со средневекового гомункулуса Парацельса и голема из еврейского фольклора и до творения Франкенштейна Мэри Шелли и «репликантов» из «Бегущего по лезвию бритвы», мифология, легенды и популярная культура полны историями о синтетической и роботической жизни. Однако точное определение разницы между жизнью и не-жизнью или между жизнью биологической и машинной – большая и длительная задача равно для науки и философии. Веками принципиальной целью науки было, во-первых, понять жизнь на ее самом основном уровне и, во-вторых, научиться ею управлять. Американский биолог немецкого происхождения Жак Лёб (1859–1924) был, видимо, первым настоящим биологическим инженером. В своих лабораториях в Чикаго, Нью-Йорке и Вудс-Холе в Массачусетсе он конструировал то, что в своей книге 1906 года «Динамика живого вещества» назвал «долговечными машинами» {12} 12 http://archive.org/stream/dynamicslivingm00loebgoog#page/n6/mode/2up
. Лёб делал двухголовых червей и, что наиболее известно, заставлял яйца морского ежа начинать эмбриональное деление без оплодотворения спермой {13} 13 Lemov, Rebecca. World as Laboratory (2005). Hill and Wang.
. Неудивительно, что Лёб стал прототипом Макса Готлиба – персонажа романа Синклера Льюиса «Эрроусмит», вышедшего в 1925 году и получившего Пулитцеровскую премию. Это было первое произведение серьезной литературы в жанре фантастики, идеализирующее чистую науку. Кстати, в нем фигурировало антибактериальное средство на основе вирусов, называемых бактериофагами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу