Тотипотентные клетки могут поддерживать этот тонкий баланс в течение нескольких делений. Но затем каждая новая клетка теряет свою тотипотентность, диапазон ее будущих возможностей сужается. Клетки внешнего слоя стремятся образовать плаценту. Другие клетки, образующие скопление внутри внешнего слоя, могут стать только частью самого эмбриона. Теперь они не тотипотентные, а плюрипотентные, но перед ними все еще несколько разных вариантов будущего.
Эти клетки меняют свои свойства, потому что у них перестраивается система, состоящая из генов и белков. Синтез белков с главных генов в тотипотентной клетке не идет так гладко, как на конвейере. Иногда эта молекулярная машинерия застопоривается, и создание белков замедляется. Иногда она ускоряется, и происходит резкое увеличение содержания этих молекул.
Такие колебания могут выводить из строя петли обратной связи в клетке [791] Goolam 2016.
. Nanog – один из главных генов в тотипотентной клетке – удерживает многие гены выключенными. Если клетка не произведет достаточного количества белка NANOG, подавленные гены активируются и выключат сам ген nanog . Когда эти генетические сети перестроятся, они уже не смогут вернуться в прежнее состояние. Клетка превратится из тотипотентной в плюрипотентную.
Плюрипотентные клетки продвигаются дальше по ландшафту Уоддингтона, попадая в еще более глубокие канавки и сужая еще сильнее свои возможности. Случайные колебания синтеза белков вместе с сигналами от соседних клеток помогают им двигаться вперед. Плюрипотентные клетки оказываются в одном из трех зародышевых слоев. После того как клетка превратится в часть мезодермы, она потеряет шанс стать фрагментом одного из других зародышевых листков, чтобы участвовать в создании глаза или легкого. И с каждым новым сужением возможностей все сильнее работает долгосрочная регуляция ДНК с помощью метилирования генов. Клетки выключают многие свои гены настолько глубоко, что те более не имеют шансов стать включенными снова. Генетические сети, которые определяют характерные свойства клетки кости, мышцы или кишечника, становятся надежнее и противостоят случайным колебаниям содержания белков. Когда такие клетки делятся, их потомство гарантированно относится к тому же типу, с тем же метилированием и теми же участками ДНК, намотанными на белковые катушки.
__________
Самое очевидное, что при делении передается по наследству дочерним клеткам, – это форма. В нервной системе эмбриона многие нейроны имеют вытянутую веретенообразную форму с двумя тонкими отростками (биполярные нейроны). Отростки отходят от крошечного тела клетки, в котором хранится ДНК. И когда нейрон делится, дочерние клетки получаются такими же вытянутыми и похожими на веретено.
Это сенсорные нейроны, благодаря которым наше тело умеет чувствовать. Например, в коже большого пальца находятся разветвленные нервные окончания сенсорного нейрона, отросток которого дальше тянется от большого пальца к запястью, огибает локоть, поднимается по плечу и, наконец, достигает тела нейрона в скоплении клеток около спинного мозга. Если вы уколете палец шипом, болевой сигнал пройдет по отросткам сенсорного нейрона в спинной мозг, а оттуда уже по другому нейрону направится в головной.
Нейробиолог из Лионского университета Лейла Бубакар с коллегами задалась вопросом, как эти сенсорные нейроны наследуют свою двуветвистую форму от своих биполярных предшественников – клеток нервного гребня [792] Boubakar et al. 2017.
. Она внимательно наблюдала за их делением и заметила, что при этом происходит нечто удивительное. Перед делением клетки нервного гребня убирали свои два отростка, оставляя только шарообразные клеточные тела. Однако стоило такой клетке разделиться, как дочерние клетки отращивали новые два отростка с тех же сторон, где они были у материнской.
Чтобы разобраться в происходящем, ученые прикрепили светящиеся метки на некоторые белки клеток нервного гребня. Они обнаружили, что клетки сохранили, как это называет Бубакар с коллегами, «молекулярную память» о своей форме с двумя отростками. И эта память передается по наследству дочерним клеткам. Перед делением клетка нервного гребня откладывает специальный белок септин в основания обоих отростков. Скопление септина остается и после отмирания отростков, отмечая, таким образом, те места, где они были.
Затем клетка нервного гребня делится на два сенсорных нейрона, каждый из которых получает септиновую метку. В этом месте оба нейрона отращивают по новой ветви. В экспериментах Бубакар выяснилось, что после этого септин перемещается к противоположному концу нового сенсорного нейрона. Там септин формирует новое скопление – таким образом клетка помечает место, где будет образован второй отросток.
Читать дальше
Конец ознакомительного отрывка
Купить книгу