The public has an impressive capacity for boredom; and many of the methods used to manipulate genes and produce animals without sex are becoming commonplace. In 1998, Switzerland, where the gothic tale of Frankenstein begins, held a referendum on whether to ban gene technology, electrical fusion included, altogether. The motion was defeated and the research has gone on. Perhaps cloning itself will, in a few years, be a standard medical technology.
A passage written in 1818 on the first Swiss genetic engineering experiment: 'With an anxiety that almost amounted to agony, I collected the instruments of life around me, that I might infuse a spark of being into the lifeless thing that lay at my feet. It was already one in the morning, the rain pattered dismally against the panes, and my candle was nearly burnt out, when, by the glimmer of the half-extinguished light, I saw the dull yellow eye of the creature open; it breathed hard, and a convulsive motion agitated its limbs.' That reads better than its modern equivalent: The birth of lambs from differentiated fetal and adult cells reinforces previous speculation that by inducing donor cells to become quiescent it will be possible to obtain normal development from a wide variety of differentiated cells'. The report of Dolly's genesis does not have quite the ring of Mary Shelley; but marks the beginning of an era that will tax the most Gothic of imaginations. And what would Dolly's spiritual ancestor, that failed Scottish clone, the Bride of Frankenstein, have thought?
Chapter Seventeen. THE EVOLUTION OF UTOPIA
One reason why science fiction is so boring is that it is nearly all the same. The monsters may differ, but the plots do not. The same is true for most imaginary Utopias. From The War of the Worlds to Planet of the Apes an alien life form appears, masters the human race, and meets its doom because of its own weakness. Most novels of the future ignore one of the few predictable things about evolution, which is its unpredictability. No dinosaur could have guessed that descendants of the shrew-like beasts that played at its feet would soon replace it, and rhe chimpanzees who outnumbered humans a hundred thousand years ago would be depressed to see that their relatives arc now abundant while their descendants are an endangered species.
Evolution always builds on its weaknesses, rather than making a fresh start. The lack of a grand plan is what makes life so adaptable and humans — the greatest opportunists of all — such a success. That utilitarian approach means that speculations about the future of evolution are risky. As Hegel put it, the greatest lesson of history is that no one ever learns the lesson of history.
In the earliest Utopian novels, from Thomas More onwards, societies of the future were quite different from those of the writer's day. They might have golden chamberpots; but there imagination ended. The people who urinated into them were much like those who preferred to hoard the metal. After Darwin, Utopia evolved: society stayed the same bur people changed instead. Many of the best-known Utopian novels trace their visions of the future to Darwin. Samuel Butler, author of Erewhon (called in its first version Darwin Among the Machines), shared an education — Shrewsbury School and Cambridge — with the great man and was himself a keen evolutionist (albeit an anti-Darwinian). Aldous Huxley's Brave New World owes much of its plot to his biological brother Julian and to their grandfather Thomas Henry Huxley, Darwin's bulldog. H. G. Wells — whose Utopia, in The Time Machine, was based on the evolutionary theme of the human race splitting into two species — himself wrote a biological textbook with Julian Huxley; and, as we have seen, George Bernard Shaw, author of Back to Methuselah, was a follower of Galton and appeared on public platforms with him.
Sometimes the link between the Utopian novel and eugenics is painfully clear. Shaw felt that 'if we desire a certain type of civilization we must exterminate people who do not fit into it'. H. G. Wells, in his scientific vision of the world to come, the (now obscure) Anticipations of the Reaction of Progress upon Human Life and Thought, published in 1901, wrote in favour of euthanasia for 'the weak and sensual' and of genocide for 'the dingy white and yellow people who do not come into the needs of efficiency'. Many Utopias would not have been comfortable places for those forced to live in them.
This book has been a tale of how humankind has evolved by the same rules as those that propel less pretentious beings. Humans are, of course, more than apes writ large. We have two unique attributes: to know the past and to plan the future. Both talents guarantee that our prospects depend on much more than genes. Nevertheless, it should be possible to make some guesses from biological history about what the evolutionary forecast might be.
One pessimistic but accurate prediction is that it means extinction. About one person in twenty who has ever lived is alive today, but only about one in a thousand of the different kinds of animal and plant has survived. Our species is in its adolescence, at about a hundred and fifty thousand years old, compared to several times this for our relatives. Its demise is, one hopes (and in spite of the advances of nuclear physics) a long way away and we can at least reflect about what might happen before then.
The rules of evolution are simple and will not change. They involve the appearance of new genes by mutation, their test by natural selection, and random changes as some, by chance, fail to be passed on. To speculate about the future of each process is to predict human evolution. Will the biological Utopia be like its fictional equivalents; will we continue to evolve as rapidly as we have since our beginnings, or is our evolution at an end?
Humans have interfered with their biological heritage since they appeared on earth. Stone tools, agriculture and private property all had an effect on society and in turn on genes. Many people are concerned that the next phase of history will be one in which genetics makes plans for the future. That asks too much of science. Inadvertent change-evolution by mistake-will be far more important than is any conscious attempt to engineer our own biology.
Even the most determined efforts of doctors, genetic counsellors or gene therapists will have only a small effect on the future. Part of that lies in the healing power of lust:in the desire of people to have children for reasons that have nothing to do with science. More is a matter of arithmetic. For recessive conditions, far more genes are hidden in normal people than in those with disease — a hundred times as many for cystic fibrosis, thousands of times for rarer diseases. Whatever happens to those who receive two copies — death in infancy or by pregnancy termination, orcure by gene therapy — is more or less irrelevant to the future. Social pressure against the genetically unfortunate has decreased. In the 1950s a small minority of achondro-plastic dwarves found a spouse, but now more than eighty per cent are married, often to someone else in the same circumstances. They often have children but, even so, the great majority of newborns with the condition appear — as they always have — because of new mutation.
Many inherited diseases appear anew each generation for the same reason. Is, as many dystopians claim, the evolutionary future in danger because of an increase in the mutation rate? H J Muller, who won the Nobel Prize for his discovery that radiation causes mutations, himself wrote a dark novel of the future, Out of the Night, in which life has been blighted by the accumulation of genetic damage. Perhaps modern civilization — with its dubious benefits of nuclear radiation and poisonous chemicals — will damage our genetic heritage. Certainly, such things do alter DNA, but the obvious threats such as man-made radiation and industrial by-products, have a smaller effect than do natural sources such as the radon gas that leaks from granite and the poisonous chemicals found in mouldy food. The Sellafield nuclear power station in the North of England is one of the dirtiest in the western world (and the North Sea its most radioactive body of water). The name of the station has itself mutated from Calder Hall to Windscale to Sellafield in a feeble attempt to calm public suspicion. Compared to other sources of radiation, its effects arc minor. Avid consumers of shellfish collected near the discharge pipe (and there are not many of those) receive about as much excess radiation as those who fly from London to Los Angeles and back four times a year and are exposed to cosmic radiation as a result.
Читать дальше
Конец ознакомительного отрывка
Купить книгу