Рис. 30. Этот срез периферической части сетчатки обезьяны проходит через слой палочек и колбочек. Маленькие белые пятнышки — палочки; более крупные черные участки с белыми точками в центре — колбочки.
Большинство обычных сенсорных рецепторов — химических, температурных или механических — деполяризуется в ответ на соответствующий стимул, т.е. они реагируют на возбуждающий стимул так же, как обычные нейроны; деполяризация ведет к высвобождению медиатора из аксонных окончаний (часто, как и в случае зрительных рецепторов, это не приводит к возникновению импульсов, вероятно из-за очень малой длины аксона). У беспозвоночных, от усоногих раков до насекомых, световые рецепторы ведут себя таким же образом, и до 1964 года предполагалось, что аналогичный механизм — деполяризация под влиянием света — действует также в палочках и колбочках позвоночных.
В 1964 году японскому нейрофизиологу Цунео Томита, работавшему в университете Кейо в Токио, впервые удалось ввести микроэлектрод в колбочки сетчатки рыбы и получить столь неожиданный результат, что у многих современников он вызывал вначале серьезные сомнения. В темноте потенциал на мембране колбочки оказался необычайно низким для нервной клетки: приблизительно 50 милливольт вместо обычных 70. При освещении колбочки этот потенциал возрастал — мембрана гиперполяризовалась — в противоположность тому, чего следовало бы ожидать. В темноте фоторецепторы позвоночных явно больше деполяризованы (имеют более низкий мембранный потенциал), чем обычные нервные клетки в состоянии покоя, и деполяризация вызывает непрерывное высвобождение медиатора из окончаний их аксонов — в точности так, как это происходит в обычных рецепторах при стимуляции. Свет, повышая потенциал на мембране рецепторной клетки (т.е. гиперполяризуя ее), уменьшает выделение медиатора. Таким образом, стимуляция, как это ни странно на первый взгляд, выключает рецепторы. Открытие Томита помогает нам объяснить, почему волокна зрительного нерва у позвоночных столь активны в темноте: спонтанную активность проявляют именно рецепторы; многие биполярные и ганглиозные клетки, вероятно, делают попросту то, что им диктуют рецепторные клетки.
В последующие десятилетия главные задачи состояли в том, чтобы выяснить, как свет вызывает гиперполяризацию рецептора и в особенности каким образом выцветание всего одной молекулы зрительного пигмента под действием одного фотона может привести в палочке к измеримому изменению мембранного потенциала. В настоящее время оба процесса достаточно хорошо поняты. Гиперполяризация на свету вызывается перекрытием потока ионов. В темноте часть рецепторной мембраны более проницаема для ионов натрия, чем остальная мембрана. Поэтому ионы натрия непрерывно входят здесь в клетку, а где-то в другом месте ионы калия выходят наружу. Поток ионов в темноте, или темновой ток, открыли в 1970 году Уильям Хейгинс, Ричард Пенн и Шуко Йосиками в Национальном институте артрита и нарушений метаболизма в Бетезде. Он вызывает деполяризацию покоящегося рецептора и тем самым — его постоянную активность. В результате выцветания зрительного пигмента на свету поры для натрия закрываются, темновой ток уменьшается и степень деполяризации мембраны становится меньше, т.е. клетка гиперполяризуется. Ее активность (высвобождение ею медиатора) ослабевает.
Рис. 31. Одиночная колбочка (слева) и две палочки с колбочкой (справа) были отпрепарированы и окрашены осмиевой кислотой. Тонкий отросток наверху каждой клетки — наружный сегмент, содержащий зрительный пигмент. Волокна внизу идут к не показанным здесь синаптическим областям.
В настоящее время в результате работ Евгения Фесенко с сотрудниками в Академии наук в Москве, Дениса Бейлора в Стэнфордском университете, Кин-Вай Яу в Техасском университете и других мы намного ближе подошли к пониманию связи между выцветанием пигмента и закрытием натриевых пор. Например, очень трудно было представить себе, как выцветание единственной молекулы могло бы привести к закрытию миллионов пор, необходимому для наблюдаемых изменений потенциала. В настоящее время выяснилось, что поры в рецепторе открываются с помощью молекул вещества, называемого циклическим гуанозинмонофосфатом (цГМФ). Выцветание молекулы зрительного пигмента приводит к целому каскаду событий. Белковая часть обесцвеченной молекулы пигмента активирует большое число молекул фермента трансдуцина, а каждая из них в свою очередь инактивирует сотни молекул цГМФ, обычно участвующих в открытии пор. Так в результате выцветания одной молекулы пигмента закрываются миллионы пор.
Читать дальше