А всего в опыте было 19 960 потомков второго поколения. Почти двадцать тысяч!
Ну, а теперь выводы. На основе цифр Менделя вы уже сами можете заключить, что закономерное соотношение доминантных и рецессивных форм во втором поколении гибридов равно 3:1.
Три к одному — это нужно запомнить.
Ну, а как у ночной красавицы? И почему именно три к одному?
Напомню: ночная красавица оказалась цветком «эксцентричным», не пожелала следовать правилу доминирования. Скрещивали растения с красными и белыми цветами, а гибриды первого поколения получились сплошь розовоцветными. Что будет в этом случае во втором поколении? Уж конечно, не 3 : 1.

Наследование цвета у ночной красавицы.
Под цветками даны гены; справа изображены хромосомы.
Ход скрещивания у ночной красавицы изображен на схеме. Буквой Р ( Р латинское) здесь обозначены родители, F 1 — первое поколение гибридов, F 2 — второе поколение, × — знак скрещивания.
Из схемы мы видим, что первое поколение все одинаковое, розовоцветное, а во втором — потомки трех типов: с красными цветами (как один из родителей), с розовыми (как гибриды первого поколения) и с белыми (как второй из родителей). А численное соотношение 1:2:1. Легко понять, что при доминировании соотношение у ночной красавицы было бы, как у гороха, 3: 1 (когда ниже мы познакомимся с формулами, это станет яснее).
Опыт, который я описал, надеюсь, убедил самых недоверчивых читателей в том, что Мендель был превосходным экспериментатором. Но он оказался и замечательным теоретиком.
Прежде всего Мендель понимал, что растения не могут передать свои признаки потомкам иначе, как через половые клетки. Спермий и яйцеклетка у животных, пыльцевое зерно и семяпочка у растений — вот передаточные этапы. Попутно он сделал еще несколько открытий. Так, например, в точном опыте Мендель доказал, что для опыления семяпочки достаточно одного-единственного пыльцевого зерна. Если бы, кроме этого, он больше ничего не дал науке, то и тогда имя его сохранилось бы в биологии.
Не зная ничего о материальных носителях наследственности, Мендель тем не менее был уверен в их существовании. Каждый из признаков, передающийся потомкам, имеет в клетке свой собственный наследственный задаток или задатки — это главная из его гипотез, в дальнейшем полностью подтвердившаяся.
А вот теперь перейдем к формулам, открытым Менделем. Не нужно пугаться: как все по-настоящему гениальное, они просты. Вернемся к скрещиванию Горохов с гладкими и угловатыми семенами, но только признаки эти (а значит, и наследственные задатки) обозначим, как делал это и Мендель, латинскими буквами. Гладкие семена — доминантный признак — обозначим А. Угловатые семена — рецессии — пусть будут а.
Мы могли бы записать скрещивание вот так:
Р: А × а
Однако у родителей тоже были родители, у каждого по два, и от каждого они получили наследственные задатки (Мендель брал проверенные семена, не гибридные). Это мы выразим, изменив запись таким образом:
Р: АА × аа
Запись означает, что у того из родителей, который имел гладкие семена, в свою очередь были два гладкосеменных родителя, и, наоборот, угловатосеменное растение происходило от двух растений с угловатыми семенами.
Каким будет первое поколение ( F 1 )?
Каждое из растений получит по одному наследственному задатку от каждого из родителей (от одного А , от другого а ).
F 1 (первое поколение) состоит из гибридов: Аа , Аа . Правда, по внешности все они гладкосеменные, однако по происхождению резко отличаются от гладкосеменных растений из родительского поколения.
Чтобы получить второе поколение, скрещивают растения F 1 между собой:
F1 : Аа × Аа
Тут возникает сложность, которую мы легко разъясним, потому что знаем больше того, что знал Мендель.
Ему же пришлось создать гениальнейшую из всех его гипотез: гипотезу чистоты гамет.
Перед скрещиванием растение образует половые клетки — гаметы. В опытах Менделя наследственные задатки не изменялись, не смешивались, не исчезали — в неизменном виде передавались они из поколения в поколение. Именно это позволило Менделю предположить, что гибридными могут быть только организмы. Гаметы же (половые клетки) всегда чисты, т. е. несут только один наследственный задаток из пары, в нашем случае или А , или а . Правильность этой гипотезы затем подтверждалась многократно, а теперь уже есть и прямые доказательства. Но вернемся к нашему скрещиванию и запишем, какие получатся гаметы:
Читать дальше