Основополагающая идея лечения стволовыми клетками — независимо от области применения — всегда одна: подобно источнику вечной молодости, они должны в любом месте обеспечить замену погибших больных клеток здоровыми. Например, для диабетиков ученые собираются вырастить из стволовых новые клетки, регулирующие уровень сахара в крови и высвобождающие инсулин. Их потом будут пересаживать в больную поджелудочную железу. Для людей с болезнью Паркинсона они собираются вырастить достаточное количество нервных клеток, синтезирующих нейромедиатор дофамин, дабы заменить ими отмирающие клетки того же типа. А чтобы восстановилась ослабленная сердечная мышца человека, перенесшего инфаркт, они хотят укрепить ее молодыми клетками.
В качестве концепции это звучит убедительно, но на практике все оказалось гораздо сложнее, чем полагали многие, когда исследование стволовых клеток только начиналось. Чтобы иммунная система не отторгала замещающую ткань, клетки, из которых ее вырастили, должны быть генетически идентичны реципиенту. До недавнего времени это удавалось только в экспериментах на животных с эмбриональными стволовыми клетками, взятыми у клонов в возрасте нескольких дней. Но этот метод весьма сомнителен с этической точки зрения, поскольку теоретически такие клоны считаются жизнеспособными. К тому же из-за многочисленных технических трудностей метод применим только в эксперименте.
В 2007 году сразу две группы генетиков привлекли к себе внимание, так как им удалось искусственно перевести эпигеном соматических клеток человека в самую раннюю стадию стволовых клеток. Это событие стало настоящей научной сенсацией, так как продемонстрировало, что у терапевтического клонирования есть альтернатива. Исследователи перепрограммировали клетки, внедрив в них методом трансдукции четыре определенных гена. Известно, что эти гены активны также в яйцеклетке, которая сразу после оплодотворения эпигенетически перенастраивается на «начало жизни».
Полученные таким способом клетки называются индуцированными плюрипотентными стволовыми клетками (iPS-клетки). Плюрипотентность означает теоретическую способность стволовых клеток развиваться в любую соматическую клетку. А индуцированные они потому, что эмбрионоподобное состояние вызвано искусственным путем. Идентичность их эпигенома с эпигеномом настоящей эмбриональной стволовой клетки и их одинаковый потенциал были доказаны Мариусом Вернигом, Алексом Майсснером и другими сотрудниками бостонской группы исследователей под руководством Рудольфа Йениша. Они сравнили метилирование ДНК, гистоновый код и модели активации генов iPS-клеток мыши с эпигенетическими переключателями в настоящих эмбриональных стволовых клетках — и не нашли никаких различий. Кроме того, эти клетки без всяких проблем включались в настоящие эмбрионы мыши и развивались затем в любой возможный тип ткани.
Не клонирование, а «перепрограммирование клеток — единственный реальный на сегодняшний день вариант», как сказал мне Рудольф Йениш в 2008 году, когда мы встретились на Международном конгрессе генетиков в Берлине. Там же он представлял новые захватывающие эксперименты своей лаборатории, в рамках которых плюрипотентные клетки мыши использовались уже для лечения больных животных. Его вывод: «Теперь мы знаем, что лечение стволовыми клетками принципиально возможно».
Во время эксперимента, который проводила группа под руководством Мариуса Вернига, ученые добились, чтобы iPS-клетки начали дифференцироваться как клетки головного мозга. Затем исследователи пересадили эти клетки в мозг мышат. Там ткани действительно превратились в клетки различных типов и функционально встроились в орган. Некоторые образцы исследователи оставили в пробирке и вырастили до тех вырабатывающих дофамин клеток, которые в большом количестве отмирают у страдающих болезнью Паркинсона. Полученные клетки они пересадили в мозг пяти крысам с этой болезнью. Состояние четырех животных заметно улучшилось в течение нескольких недель.
В другом случае исследователи из группы под руководством Якоба Ханны проводили эксперимент на мышах с серповидно-клеточной анемией. Это заболевание состоит в том, что один дефектный ген вызывает повреждение красных кровяных телец. Сначала ученые взяли несколько клеток из мышиных хвостов и перепрограммировали их в iPS-клетки. В них они заменили дефектный ген на нормальный и дифференцировали эти клетки в клетки — предшественники крови. Получившийся материал снова пересадили животным в костный мозг, который до этого был максимально разрушен облучением, чтобы клетки там размножились и синтезировали здоровые кровяные тельца. Это не привело к молниеносному выздоровлению мышей, поскольку у них по-прежнему оставалось несколько стволовых клеток крови с дефектным геном, но их состояние заметно улучшилось. «Теоретически мы могли бы лечить этим методом все возможные виды заболеваний костного мозга», — считает Рудольф Йениш.
Читать дальше