Петер Шпорк - Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем

Здесь есть возможность читать онлайн «Петер Шпорк - Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2012, ISBN: 2012, Издательство: Ломоносовъ, Жанр: Биология, Медицина, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В своей поистине сенсационной книге немецкий нейробиолог Петер Шпорк приглашает исследовать мир новой, революционной науки — эпигенетики. Он объясняет, почему от рака умирают даже те люди, которые не унаследовали раковые гены и не вели нездоровый образ жизни; почему взрослые склонны к определенным болезням, если в младенческом возрасте испытывали недостаток любви; как наш образ жизни может повлиять на судьбу наших внуков. И показывает, что может сделать каждый из нас, чтобы прожить здоровую и долгую жизнь.

Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Существует четыре типа гистонов, причем каждый присутствует в барабане в двойном количестве. У гистонов Н3 и Н4 особенно длинные хвосты, и при сравнении я обнаруживаю, что нуклеосомы отличаются друг от друга только из-за них.

На нуклеосомах в разных местах видны отличающиеся по размеру наросты. Время от времени появляются те или иные белки, и в результате их работы такой нарост возникает или исчезает. Ферменты — метильные, ацетильные, фосфатные группы, убиквитиновые белки — совершенно целенаправленно присоединяют или удаляют химические структуры (те самые наросты). Кроме того, существует целый ряд малых белков, которые связываются с этими группами и непосредственно воздействуют на активность генов.

Активность белков, постоянно изменяющих хвосты гистонов, заставляет делать выводы, от которых ученые отказывались всего 15 лет назад. Теперь это общепризнанное мнение: благодаря изменчивости гистоновых хвостов эпигенетический код может оказывать удивительно детальное, тонко дифференцированное и многоаспектное влияние на назначение и свойства клетки.

Заклинание звучит так: модификация гистонов. В зависимости от того, какой нарост и какой малый белок присоединяются к тому или иному участку хвоста, пространственная структура гистона строго определенным образом меняется. В результате нить ДНК либо плотнее, либо свободнее прилегает к барабану, так что ряду дополнительных белков, выполняющих важные функции, легче или труднее к ней присоединиться.

Модификация гистонов Нуклеосома на которую наматывается нить ДНК состоит из - фото 3

Модификация гистонов. Нуклеосома, на которую наматывается нить ДНК, состоит из восьми гистонов. На разных участках хвостов гистонов Н3 и Н4 ферменты могут прикреплять и снова удалять метильные группы. К метильным группам присоединяются малые белки, влияющие на генную регуляцию. Так как аналогичные процессы происходят и с другими химическими группами, у клетки множество возможностей варьировать активность того или иного участка ДНК.

Например, при помощи фермента клетка удаляет в одном месте или присоединяет в другом какое-либо химическое соединение, вследствие чего ДНК еще плотнее накручивается на свой «барабан». Это мгновенно выключает гены на данном участке. Но может случиться и так, что нить ДНК распускает кольца или вообще сматывается с катушки, что при определенных условиях сразу открывает целые группы генов для считывания, а следовательно, и для активации.

Одновременно нуклеосомы могут распадаться на составные части, чтобы снова собраться в катушку в совершенно другом участке генома. При этом они наматывают какой-либо участок ДНК особенно плотно и деактивируют его. Похоже, помимо этого структура нуклеосомы определяет, на каких именно участках хроматин уплотняется до состояния гетерохроматина. Там гены не считываются ни при каких условиях.

Белковые структуры, расположенные вокруг ДНК, «гораздо динамичнее, чем мы предполагали раньше», считает Стивен Хеникофф из Высшей медицинской школы имени Говарда (Сиэтл, США). По его словам, хвостатые белки образуют в наследственном материале настоящий гистоновый код. Пока еще точно не известно, как именно протекают все эти процессы, но совершенно очевидно: гистоновый код позволяет каждой клетке выбирать одну из множества различных программ генной регуляции, а также создавать новые программы и сохранять их на ближайшее будущее.

В клеточном ядре очень много нуклеосом. Каждая из них выполняет отдельную крохотную задачу — контролирует обвивающийся вокруг нее участок ДНК длиной примерно в 150 генных букв. Но все вместе нуклеосомы помогают работе клетки. Без потрясающей изменчивости крохотных белковых барабанов клетки не смогли бы правильно прочитать свой генетический код, не говоря уже о правильном упорядочении и осмысленном использовании информации.

«Если ДНК — единица хранения генетической информации, то нуклеосома представляет собой единицу хранения эпигенетической информации; она способна реагировать на сигналы из окружающей среды и влиять на способ функционирования генов», — уверен Томас Йенувайн из Фрайбурга.

Мир РНК

Когда Ханс Йорнваль, секретарь стокгольмского Нобелевского комитета, 2 октября 2006 года объявил новых лауреатов этой премии по медицине, по залу прокатился ропот. Такого решения ожидали немногие зрители: лауреатами оказались двое активных ученых лет по сорок с небольшим, чьи важнейшие публикации появились за восемь лет до того. Обычно награждают более заслуженных специалистов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем»

Представляем Вашему вниманию похожие книги на «Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем»

Обсуждение, отзывы о книге «Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x