Внимательно рассматриваем кривую нарастания фотопотенциала после вспышки лазера. Нет, эта техника все же чудо! Потенциал нарастал в течение каких-то десяти миллисекунд. Блок памяти запомнил кривую и выдал на осциллограф, который записал ее за две секунды. Мы замедлили время в 200 раз. А потом и вовсе остановили его. Теперь кривая на экране будет светиться до тех пор, пока в этом есть необходимость. Да, кривая красива: на первый взгляд настоящая экспонента. Только в самом начале какая-то излишняя крутизна. Вводим кривую в ЭВМ. Программист А. Драчев просит вычислительную машину измерить временную шкалу в самом начале кривой. Теперь это будут не милли-, а микросекунды...
Занятна сама процедура общения с этой машиной. Нажав тумблер, мы вводим кривую в память машины. Затем программист печатает на клавишах вроде бы обычной пишущей машинки свою просьбу к ЭВМ. Печатает не какой-нибудь код, а прямо-таки наши обычные, человеческие слова. Этот текст немедленно воспроизводится на экране.
Вскоре на том же экране появляются слова, программистом не напечатанные. Это уже речь самой машины. Она сообщает, что приняла информацию.
Несколько секунд, и на другом экране возникает наша кривая, но теперь уже начало ее дано в микросекундной шкале.
Машина спрашивает, довольны ли мы ее работой. Мы в восхищении, но А. Драчев считает, что великоваты шумы, и просит машину усреднить данные. Еще несколько секунд, и появляется новый вариант нашей кривой — краше прежнего!
А ведь не зря А. Драчев убрал шумы! Теперь видно, что в действительности кривая генерации фотопотенциала состоит из трех фаз. Первая невелика по амплитуде и направлена противоположно основным фазам II и III. Она завершается быстрее, чем может измерить даже наша сверхбыстрая техника (время ее возникновения меньше 10-7 секунды). Фаза II заканчивается к сотой микросекунде, а фаза III — к двадцатой миллисекунде после вспышки.
Получив этот результат, мы решили заменить воду в ячейке на D2O, тяжелую воду, в расчете на то, что это замедлит фазы генерации фотопотенциала, которые связаны с переносом Н+ (известно, что все процессы, где участвует ион водорода, замедляются, если вместо него в среде присутствует ион дейтерия, D+).
Вспышка лазера, и на экране дисплея ЭВМ яркий зеленый лучик выписывает динамику фотоэффекта в D2O. Фазы II и III явно затянуты. А. Драчев приказывает машине рассчитать время, за которое фаза II достигает 50 процентов своей величины. Это время заметно больше в D2O, чем в Н2О. То же для фазы III.
Для наглядности программист вызывает из недр памяти ЭВМ кривую прошлого опыта (с обычной водой). На это уходит всего несколько секунд. Лучик рисует другую кривую, она ложится гораздо левее той, которая была только что получена в опыте с D2O.
А что с фазой I? К сожалению, ее скорость в D2O все еще слишком велика и потому ускользает от измерения.
Из опыта с D2O можно было заключить, что по крайней мере фазы II и III как-то связаны с переносом Н+.
Независимое подтверждение этого вывода было получено, когда мы сопоставили наши кривые с динамикой спектральных превращений бактериородопсина.
Как показали в свое время У. Стокениус и Д. Остерхельт, поглощение кванта света бактериородопсином ведет к весьма характерному изменению его окраски: сначала спектральный максимум бактериородопсина несколько смещается в красную область, затем происходит резкий сдвиг в противоположную (синюю) область, после чего максимум возвращается в исходное положение.
Так вот времена этих трех спектральных сдвигов оказались весьма сходными с тремя фазами обнаруженного нами фотоэлектрического эффекта: красный сдвиг неизмеримо быстр, синий — десятки микросекунд, возврат к исходному положению — десятки миллисекунд. Мы повторили спектральные измерения Стокениуса и Остерхельта в условиях нашего эксперимента и убедились в хорошей корреляции спектрального и электрического ответов.
Из работ А. Льюса было известно, что синий сдвиг в окраске бактериородопсина обусловлен отщеплением протона от атома азота в альдиминной группе бактериородопсина, а последующий обратный сдвиг — протонированием того же атома.
Теперь сопоставим основные факты, чтобы попытаться представить себе механизм генерации протонного потенциала бактериородопсином. Факты таковы:
Читать дальше