И вот наконец долгожданный опыт. Еще вчера А. Каулен приготовил протеолипосомы из бактериородопсина и соевого фосфолипида. Другим фосфолипидом пропитана коллодиевая пленка, закрепленная в отверстии между отсеками с электродами. В один из отсеков три часа назад добавили протеолипосомы. За это время они должны были прилепиться к поверхности пленки.
Проверяем аппаратуру. Луч осциллографа пробегает наискосок зеленый экран, оставляя за собой светлый немеркнущий след. Это разряжается «темновая» разность потенциалов между электродами, только что опущенными в измерительную ячейку.
Еще несколько минут ожидания. «Темновая» разность потенциалов исчезла — осциллограф чертит одну за другой горизонтальные прямые, ложащиеся след в след. Это нулевая линия.
Ну что ж, попробуем для начала повторить наш старый добрый опыт по генерации фотопотенциала при постоянном освещении. Л. Драчев опускает тумблер, чтобы остановить бесконечный бег нулевой.
Нажата кнопка, и отверстие, ведущее к ячейке, освещается постоянным светом мощной лампы. Перевожу взгляд на экран. Здесь записан мощный фотоэффект: между электродами возникла разность потенциалов порядка 200 милливольт. Выключаем свет: кривая отклоняется вниз, неудержимо стремясь к нулевому уровню.
Порядок. Теперь черед за лазером. Какую выбрать измерительную шкалу? Конечно, почувствительней. Ведь бактериородопсин сработает всего один-единственный раз.
Вспышка. На какое-то мгновение (мы знаем, на какое — 3bull;10-8 секунды!) ячейка высвечивается яркой зеленой молнией. Луч осциллографа взметнулся вверх, зашкалил и вернулся назад, к нулю. Есть ответ, да какой — не хватило шкалы!

Ученые в работе
Взяли в 10 раз более грубую шкалу, снова вспышка, снова зашкал. Еще в 10 раз загрубили шкалу, и опять недостаточно. Лишь с четвертого раза удалось наконец записать фотоэффект. Он оказался около 60 милливольт.
Да, с таким эффектом работать можно! Но стоило ли городить всю эту махину? Пока что из всех новшеств потребовался один только лазер.
Эффект хорош, что и говорить! Такого еще не видел никто: генерация потенциала при однократном срабатывании бактериородопсина! Но ведь это не цель, а лишь необходимое условие, чтобы двигаться дальше. Нам надо знать, как переносится протон.
Внимательно рассматриваем кривую нарастания фотопотенциала после вспышки лазера. Нет, эта техника все же чудо! Потенциал нарастал в течение каких-то десяти миллисекунд. Блок памяти запомнил кривую и выдал на осциллограф, который записал ее за две секунды. Мы замедлили время в 200 раз. А потом и вовсе остановили его. Теперь кривая на экране будет светиться до тех пор, пока в этом есть необходимость. Да, кривая красива: на первый взгляд настоящая экспонента. Только в самом начале какая-то излишняя крутизна. Вводим кривую в ЭВМ. Программист А. Драчев просит вычислительную машину измерить временную шкалу в самом начале кривой. Теперь это будут не милли-, а микросекунды...
Занятна сама процедура общения с этой машиной. Нажав тумблер, мы вводим кривую в память машины. Затем программист печатает на клавишах вроде бы обычной пишущей машинки свою просьбу к ЭВМ. Печатает не какой-нибудь код, а прямо-таки наши обычные, человеческие слова. Этот текст немедленно воспроизводится на экране.
Вскоре на том же экране появляются слова, программистом не напечатанные. Это уже речь самой машины. Она сообщает, что приняла информацию.
Несколько секунд, и на другом экране возникает наша кривая, но теперь уже начало ее дано в микросекундной шкале.
Машина спрашивает, довольны ли мы ее работой. Мы в восхищении, но А. Драчев считает, что великоваты шумы, и просит машину усреднить данные. Еще несколько секунд, и появляется новый вариант нашей кривой — краше прежнего!
А ведь не зря А. Драчев убрал шумы! Теперь видно, что в действительности кривая генерации фотопотенциала состоит из трех фаз. Первая невелика по амплитуде и направлена противоположно основным фазам II и III. Она завершается быстрее, чем может измерить даже наша сверхбыстрая техника (время ее возникновения меньше 10-7 секунды). Фаза II заканчивается к сотой микросекунде, а фаза III — к двадцатой миллисекунде после вспышки.
Получив этот результат, мы решили заменить воду в ячейке на D2O, тяжелую воду, в расчете на то, что это замедлит фазы генерации фотопотенциала, которые связаны с переносом Н+ (известно, что все процессы, где участвует ион водорода, замедляются, если вместо него в среде присутствует ион дейтерия, D+).
Читать дальше