Белок, синтезированный одним геном, может активировать несколько других генов или равным образом деактивировать их. Таким образом, в клетке существует система взаимодействия различных генов, определяющая поведение клетки и ее изменение со временем.
Срощенная РНК покидает клеточное ядро, проникает в цитоплазму и направляется к рибосомам — местам сборки белков. Рибосомы — это небольшие округлые белковые образования, в которые попадают РНК и в которых в точном соответствии с последовательностью нуклеотидов РНК происходит синтез новых белков — так, что расположение аминокислот синтезируемых белков точно соответствует последовательности нуклеотидов матричной РНК.
Само превращение последовательности нуклеотидов РНК в последовательность аминокислот вновь синтезируемого белка в рибосомах происходит при помощи небольших молекул РНК, известных как «передаточные РНК». Эти молекулы способны распознавать набор из трех нуклеотидов, которые считываются за один раз, и прикрепляться к той аминокислоте, которая соответствует этому троичному набору. Например, аминокислота лизин кодируется последовательностью нуклеотидов «ААА» или «AAG», а аминокислота тирозин — последовательностью нуклеотидов «UAC» либо «UAU». Передаточная РНК распознает эти последовательности нуклеотидов. Затем вступает в действие рибосома — своеобразная клеточная «фабрика» по производству новых белков.
Рибосомы являются одними из наиболее сложных образований клетки. В их состав входят белки и РНК. Рибосома движется вдоль молекулы РНК и соединяет воедино аминокислоты при помощи передаточных РНК. Рибосомы работают весьма быстро — как и все остальные части клетки — и за одну секунду способны соединить две аминокислоты. В результате белки синтезируются в период времени от 20 секунд до нескольких минут.
В настоящее время мы способны понять природу мутаций и то, как они могут влиять на поведение клетки. Мутация ДНК может поменять последовательность нуклеотидов в генах и тем самым привести к изменению последовательности расположения аминокислот во вновь синтезируемых белках. Это способно изменить пространственную структуру белка и его функции, привести к образованию белка-мутанта, что может иметь как негативные, так и позитивные последствия. Все это мы рассмотрим в последующих главах. Мутации, меняющие функции белков в яйцеклетках или сперматозоидах, являются основными факторами эволюции, поскольку они будут унаследованы следующими поколениями. Изменения в ДНК, расположенных в контрольных зонах, также влияют на поведение клеток, поскольку они определяют, когда и в какой клетке происходит активация наследственного гена.
ДНК человека содержат 3 миллиарда основных пар нуклеотидов. В среднем человеческий ген содержит 27 тысяч основных пар нуклеотидов, однако при этом лишь 1300 пар нуклеотидов в составе такого гена используются для кодирования последовательности аминокислот во вновь синтезируемом белке, определяя тип и последовательность примерно 430 его аминокислот. Люди, не являющиеся родственниками, отличаются друг от друга в среднем всего на 1 процент, однако подобное различие включает в себя и различия в трех миллионах их нуклеотидов.
Трудно представить себе, как такой гигантский объем информации может содержаться в наших клетках. Меня поразила выставка, где вся последовательность наследственной информации человека была для наглядности представлена в виде книг, заполнявших собой огромный шкаф. Достаточно открыть любую из этих книг на какой угодно странице и увидеть, что каждый из этих томов заполняет описание последовательности нуклеотидов, напечатанное мелким шрифтом: «ATGCTGACCGATTAGTCA» — и так далее, при этом в каждом таком томе не меньше пятисот страниц. Достаточно просто взглянуть на это, чтобы испытать чувство неподдельного почтения к способности клеток хранить и использовать наследственную информацию. Если вытянуть содержащуюся в клетке цепочку генов в длину, то длина ее составит два метра. Каким же образом клетка находит нужный ей ген? И откуда клетка знает, в какой из этих книг и на какой именно странице находится нужный ей ген? Что определяет переход гена в активированное состояние и создание РНК, содержащей информацию, необходимую для синтеза какого-то конкретного белка?
Ответ на этот вопрос раскрывает фундаментальные особенности механизма контроля за поведением клетки, ибо именно это определяет, какие белки содержатся в клетке, что, в свою очередь, непосредственно определяет и само поведение клетки.
Читать дальше