Чтобы проверить, верны ли такие предположения, мы сделаем еще одну вещь. Сначала мы увеличим дистанцию, которую должен преодолеть фотон p до попадания в детектор. Соответственно, у фотона p будет уходить больше времени на преодоление пути. Следовательно, фотоны, идущие по пути S , будут попадать в свой детектор раньше. Но, как ни странно, результаты опыта не изменятся! Когда мы установим четвертьволновые пластинки на пути S , периферийная часть графика исчезнет. Когда же мы установим на пути P деполяризующие окошки и, таким образом, не сможем более измерять совпадения и определять, куда летят s -фотоны, на графике вновь появятся периферийные области. Но как это возможно? Ведь фотоны, двигавшиеся по пути S , уже достигли своей цели. Каждый фотон прошел либо через одну из щелей как частица, либо через две щели сразу как волна. Либо у фотона произошел коллапс волновой функции и он стал частицей, либо этого не произошло. Игра окончена, действие свершилось. Фотоны s уже достигли последнего барьера и были отмечены в детекторе до того , как их фотоны-близнецы p попали в деполяризующее устройство, а мы в результате этого попадания не смогли получать информацию о курсе фотона.
Каким-то образом фотоны «узнавали», сможем ли мы в будущем получать информацию об их траектории. Они «решали» не коллапсировать и не становиться частицами еще до того, как их далекие близнецы попадали в наш деполяризатор. Если мы уберем P -деполяризатор, то фотоны s вдруг снова станут частицами, опять же до того, как фотоны p будут достигать своего детектора и им активировать соответствующий счетчик совпадений. Каким-то образом фотон s узнает, будет ли стираться маркер траектории, хотя ни сам этот фотон, ни его близнец к тому моменту еще не достигли стирающего механизма. Фотон знает, когда он может проявлять интерференционное поведение, когда может запросто оставаться в зыбком квазиреальном состоянии и проскальзывать через обе щели, поскольку ему, по-видимому, известно, что летящий далеко-далеко фотон p в конце концов попадет в деполяризатор, что не позволит нам узнать, по какому пути пошел p .
Не имеет значения, как именно мы построим эксперимент. Наш разум, а также наличие или отсутствие в нем определенных знаний – вот единственный фактор , определяющий, как себя поведут эти кванты света или частицы материи.
Все вышеизложенные факты заставляют задуматься о природе пространства и времени. Насколько реалистичны предположения о том, что фотоны-близнецы манипулируют информацией до ее появления, а также без малейших затрат времени на любых расстояниях, как если бы пространства между ними не существовало?
Все новые и новые наблюдения убедительно подтверждают, что квантовые эффекты зависят от наблюдателя. В прошлом десятилетии американские физики из Национального института стандартов и технологий выполнили эксперимент, суть которого на квантовом уровне можно сравнить с таким гипотетическим явлением в макромире: на огне стоит котел с кипящей водой, но как только мы посмотрим на сосуд – кипение прекращается. «По всей видимости, – говорит Питер Ковеней, исследователь из этого института, – сам акт наблюдения за атомом не позволяет ему меняться». Теоретически, если бы мы достаточно пристально смотрели на атомную бомбу, она бы не взорвалась. На практике для этого потребовалось бы проверять ее атомы раз в миллионнотриллионную долю секунды. Здесь мы затрагиваем еще один эксперимент, подтверждающий теорию о том, что структура физического мира, и в частности мельчайших частиц материи и квантов энергии, подвергается воздействию наблюдателя.
За пару последних десятилетий ученые-теоретики, специализирующиеся на квантовой физике, показали, что, в принципе, атом не может изменять свое энергетическое состояние, если находится под наблюдением. Для проверки этого утверждения группа специалистов по экспериментам с применением лазера, работающих в Национальном институте стандартов и технологий, удерживала кластер положительно заряженных ионов бериллия («вода») при помощи магнитного поля («чайника») . Ученые «кипятили» «чайник», воздействуя на него радиочастотным полем, которое переводило атомы из низкоэнергетического в высокоэнергетическое состояние. Как правило, на такой переход требуется около четверти секунды. Однако, когда ученые проверяли состояние атомов раз в четыре миллисекунды, воздействуя на каждый атом крошеным лазерным импульсом, атомы так и не переходили в высокоэнергетическое состояние, несмотря на то что внешняя сила подталкивала их к нему. Можно было предположить, что акт измерения «тревожит» атом, сталкивая его обратно в низкоэнергетическое состояние, фактически сбрасывая систему на ноль. Такое поведение не имеет аналога в повседневном чувственно воспринимаемом мире и, по всей видимости, связано с актом наблюдения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу