Беспилотные автомобили – лишь самая заметная часть сдвига в экономике, вызванного информационными технологиями. Данные текут в Интернете, как вода по городскому трубопроводу. Они собираются в огромных информационных центрах, управляемых такими компаниями, как Google, Amazon, Microsoft и др. Для их работы требуется огромное количество электроэнергии, поэтому центры располагаются рядом с гидроэлектростанциями – при передаче потока информации вырабатывается столько тепла, что только реки могут его охладить. В 2013 году информационные центры в США потребили 10 миллионов мегаватт, что сравнимо с энергией, которую вырабатывают 34 большие электростанции [10] Американские центры обработки данных потребляют все больше энергии. Совет по защите природных ресурсов, 2015. www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy
. Но гораздо большее значение для экономики имеет то, как используются эти данные. Необработанная информация превращается в знание о людях: что вы делаете, чего хотите и что вообще из себя представляете. Более того, эта информация передается от вас через устную речь.
В настоящее время глубокое обучение применяется в компании Google для сотни приложений, от Street View и до Inbox Smart Reply, а также для голосового поиска. Несколько лет назад инженеры Google поняли, что необходимо доработать эти приложения до очень высокого уровня, и приступили к созданию специального чипа, предназначенного для глубокого обучения. Для удобства плата спроектирована так, что входит в стандартный слот для жесткого диска в стойке центра обработки данных. Тензорный процессор Google (Google Tensor Processing Unit; Google TPU) сегодня внедрен на множестве серверов по всему миру, значительно повышая производительность приложений с глубоким обучением.
Рис. 1.3. Приложение Google Translate мгновенно переводит с других языков дорожные указатели, стоит навести на них камеру. Это особенно актуально, если вам нужно сесть на поезд в Японии
Пример того, как быстро глубокое обучение может изменить мир, – его влияние на перевод с иностранных языков. Перевод с одного языка на другой – заветная мечта ИИ, поскольку основан на понимании предложений целиком. В 2016 году компания Google запустила новый Переводчик, основывающийся на глубоком обучении, что стало большим шагом на пути к живому переводу. Буквально в одночасье перевод превратился из беспорядочного смешения отдельных фраз в связные предложения (рис. 1.3). Раньше программа искала комбинации слов, которые можно было бы перевести вместе, но глубокое обучение создает перевод, исходя из смысла всего предложения.
18 ноября 2016 года научный сотрудник Токийского университета Юн Рекимото заметил внезапное усовершенствование Google Переводчика. Чтобы протестировать новую систему, он перевел в приложении начало рассказа Эрнеста Хемингуэя «Снега Килиманджаро» на японский, а затем обратно на английский. Читателю нужно определить, какой отрывок принадлежит Хемингуэю, а какой – Google Переводчику [11] Льюис-Краус Гидеон. New York Times Magazine, 14 декабря 2016 года. www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html?_r=0 Hemingway is # 1
:
1. Килиманджаро – покрытый вечными снегами горный массив высотой в 19 710 футов, как говорят, высшая точка Африки. Племя масаи называет его западный пик «Нгайэ-Нгайя», что значит «Дом Бога». Почти у самой вершины западного пика лежит иссохший мерзлый труп леопарда. Что понадобилось леопарду на такой высоте, никто объяснить не может [12] Цит. по: Хемингуэй Э. Снега Килиманджаро / Перевод с английского Н. А. Волжиной. М., 1968.
.
2. Килиманджаро – это заснеженная гора высотой 19 710 футов, которая считается самой высокой горой в Африке. Его западная вершина называется Масаи «Нгадже Нгаи», Дом Бога. Рядом с западной вершиной находится высушенная и замороженная туша леопарда. Никто не объяснил, что искал леопард на такой высоте [13] Перевод оригинала с английского языка на русский, выполненный Google Переводчиком в 2021 году. – Прим. ред.
.
Следующая цель глубокого обучения – научить автопереводчик работать с абзацами, чтобы он мог выявлять связи между несколькими предложениями. У слов глубокие культурные корни. Владимир Набоков, автор романа «Лолита», писавший и на русском, и на английском, пришел к выводу, что невозможно переводить поэзию. Его литературный перевод на английский язык «Евгения Онегина» Пушкина [14] Eugene Onegin. A Novel in Verse by Alexandr Pushkin / Translated from the Russian, with a Commentary, by Vladimir Nabokov. In four volumes. – NY: Pantheon Books, 1964.
дополнен пояснениями о культуре той страны и того времени, в котором создавался оригинал; необходимость давать такие сноски подтверждает его точку зрения. Но, возможно, однажды Google Переводчик сможет переводить произведения Шекспира, опираясь на контекст его творчества в целом [15] Ранние попытки приведены в статье «Завышенная эффективность рекуррентных нейронных сетей» по ссылке: karpathy.github.io/2015/05/21/rnn-effectiveness/ – Прим. авт.
.
Читать дальше